
Machine Parsing of Gilaki Verbs
with Fieldworks Language Explorer

Ron Lockwood
SIL International

Abstract
This paper will outline how machine parsing with Fieldworks Language Explorer (FLEx) can be

done. To illustrate, this parsing will be applied to Gilaki verbs which have sufficient complexity in
several areas to show the various methods of getting surface forms to parse correctly while ruling
out incorrect forms. The paper will go through the steps to setup a system of parsing in FLEx. This
includes setting up a lexicon for roots and affixes, defining templates for verb forms, applying features
to lexical items, setting up environment rules and using ad-hoc rules. I will show how parsing can
be done both in Arabic script and in Latin script using the same system. Lastly I will show some uses
of machine parsing for creating interlinear texts and as a morphological spelling-checker.

1 Introduction to FLEx
FLEx is a tool that facilitates the recording and analysis of linguistic and anthropological data.1 It

provides a well-ordered set of fields to record data. It also provides a means of recording a text corpus
with the built-in capability to interlinearize text. Running an optional automated morphological
parser can make interlinearizing text an efficient task. Grammar tools are also available which allow
the user to capture grammatical information. This information is used by the morphological parser,
providing a way to check grammatical rules recorded against real language data. The grammar
information can also be compiled in an automatically generated grammar sketch.
Here are some things you can use FLEx for:

• Enter lexical information for the development of a dictionary
• Rapidly enter words that were collected at a semantic domain word elicitation workshop
• Record vernacular texts and view a concordance of words within recorded texts
• Create an interlinear analysis of texts
• Analyze morphology
• Create a grammar sketch
• Record anthropological field notes

A couple of screen shots of the tools are shown below.
1In version 6.0 and earlier the Fieldworks software suite included a tool called Data Notebook for recording and

analyzing anthropological data. In version 7.0 of FLEx this tool is integrated into FLEx.

1



2 Machine Parsing of Gilaki Verbs with Fieldworks Language Explorer
(1) Lexicon edit view showing a sample lexicon entry

(2) Interlinear text analysis view showing an interlinearized sentence



The FLEx Parser 3
2 The FLEx Parser

The parser is a tool built into FLEx and it can be used to parse a single word, a single text or all
words in all texts. It runs as a background process in FLEx so it does not mean you have to stop
working in other parts of the tool. There is a Try a Word tool that works together with the parser
for experimenting on word parsing. Built into the Try a Word tool is the ability to research why a
word did or did not parse. This can be very helpful.
The default FLEx Parser uses an item and arrangement approach for parsing text, Black (2010).

This means that the FLEx parser looks at the surface forms of words and creates possible parses
from those forms. There is also an experimental parser that uses an item and process approach
where underlying forms can be specified. This paper will deal with machine parsing using the first
approach. For more information on using the second approach see appendix B of Black (2010).

3 Setting up FLEx for Parsing
To be able to do a good job of machine parsing in FLEx several things must be in place.

3.1 Lexicon
The first requirement is that you have a lexicon containing both the stems and affixes for your

language. See (3) and (4).
(3) A stem entry for a Gilaki verb



4 Machine Parsing of Gilaki Verbs with Fieldworks Language Explorer
(4) A suffix entry for a Gilaki verbal suffix

The main difference between these two kinds of entries is that an affix has a different value for the
Morph Type field. In (3) the morphtype is "stem" whereas in (4) the Morph Type is "suffix".
The parser in FLEx will examine a word and try to find matches of affixes and roots in the lexicon.

3.2 Phonemes
Another requirement is to set up phonemes in FLEx. These are required because phonemes are

referred to in environment rules and can also be referenced in phoneme classes. Basically this is just
defining what the phonemes are in the language and naming them so that they can be referred to by
other elements of the program. Phonemes are accessed in FLEx by going to the Grammar area and
clicking on the view: "Phonemes".



Natural Classes 5
(5) A partial list of Gilaki phonemes

3.3 Natural Classes
In order to group multiple phonemes together it is necessary to set up natural classes in FLEx. The

advantage of setting up phoneme classes is that an environment rule can be created that refers to
a whole set of phonemes through the class name. Some common phoneme classes are consonants,
voiceless stops and back vowels. Phonemes are accessed in FLEx by going to the Grammar area and
clicking on the view: "Natural Classes".
(6) A list of phoneme classes in Gilaki



6 Machine Parsing of Gilaki Verbs with Fieldworks Language Explorer
3.4 Environments
A fourth requirement is environments. Environments are things defined in FLEx in order to con-

strain where lexeme forms and allomorphs can occur according to the orthographic environment.
They are key things to define for parsing in FLEx because they enable the parser to determine when
one allomorph can or cannot be used.
(7) Some examples of environments defined for Gilaki

3.5 Templates
The final requirement is templates. A template is a very powerful tool in FLEx to define affix slots

for a grammatical category. In this paper we are focusing on templates for verbs, but templates can
be defined for any grammatical category. It is possible to create multiple templates for a category
and even have a hierarchy of templates where a template at a higher level applies to all grammatical
subcategories.
(8) Example of a template

2

4 Modeling Gilaki Verb Morphology with Templates
In this section I will discuss the basic morphology patterns of Gilaki verbs and how I have used

FLEx to model this. See Rastorgueva, et al. (1971) for a good description of Gilaki grammar.
4.1 Forms Built on the Present Stem
As in many Iranian languages, Gilaki verbs are built on two different stems. We can refer to these

two kinds of stems as present and past. In my model for parsing verbs I have subcategorized verbs
into two main categories, present and past.3 The following three sections show forms built on the
present stem.

2Note that some verbs take the -in form and some take the -id form.
3Another possibility for modeling two different stems would be to use "stem names" as described in Black (2010).



Simple Aspect 7
4.1.1 Simple Aspect
The simple aspect verb form is also simple in terms of its affixation. It has a set of subject agreement

suffixes that are added to the present stem. The negative simple aspect form is formed with the prefix
nə-.4 This is modeled in my FLEx project by having a template called "Simple" which has an optional
negative prefix slot and an obligatory subject agreement template slot. The template is shown in
(9). Note that the SubAgr slot contains all the subject agreement suffixes including a past suffix and
the participle suffix.5

(9) Simple aspect verb template

The parser gives the parses shown in (10) and (11) for the verb forms xurəm and nuxurəm which
mean I eat and I do not eat respectively.
(10)

(11)

4.1.2 Subjunctive Mood
Another verb form that is built on the present stem is the subjunctive mood. Like the simple aspect

and many other verb forms, it has a full set of subject agreement suffixes. It also has the prefix bu‑6
that marks the verb as being subjunctive. This form can also have a negative form with the prefix
nə- and when the form is negative, the subjunctive prefix drops out. This is modeled in my FLEx
project with a template that has an optional negative prefix slot, an obligatory subjunctive prefix

4Four forms are possible n-//nə-//nu-//ni- depending on the context.
5See section 5.1 for a discussion of why there are some past suffixes in a present template.
6Four forms are possible b-//bə-//bu-//bi- depending on the context.



8 Machine Parsing of Gilaki Verbs with Fieldworks Language Explorer
slot and an obligatory subject agreement slot.
How is the subjunctive prefix that drops out handled? For this prefix I have defined a null allo-

morph which is conditioned by the environment of having some letter preceding it. The allomorph
is defined as shown in (12) in my FLEx lexicon. When the subjunctive template is being used to
parse a negative subjunctive form, the parser requires there to be a prefix in the subjunctive slot.
There is no overt subjunctive prefix to be found, so the parser uses the null allomorph for the parse.
(12) Allomorph section of the subjunctive prefix entry showing a null allomorph

See (13) which shows what the FLEx template for the subjunctive mood looks like.
(13) Subjunctive mood verb template

The parser gives the parses shown in (14) and (15) for the verb forms buxurəm and nuxurəm
which means I might eat and I might not eat respectively. Note that nuxurəm was used in (11)
above illustrating the simple aspect form. This form can have two meanings and thus by having the
templates (9) and (13) in place, the parser gives the two possible parses shown in (15).
(14)



Imperative Mood 9
(15)

4.1.3 Imperative Mood
The imperative is somewhat similar to the subjunctive mood. It also can have an optional negative

prefix nə- and it has a prefix bu-. This indicates imperative mood which like the subjunctive drops
out when the negative prefix is present. The suffixes that can occur with the imperative mood are
limited. This verb form is modeled in FLEx as shown in (16). The template has the same optional
negative prefix slot that we have seen before. It has an obligatory imperative prefix slot and an
obligatory imperative suffix slot.
The dropping out of the imperative prefix in the negative form is handled in the same way as the

subjunctive case. In fact, the forms of the subjunctive and imperative are the same, so the same
lexical entry in the lexicon is used and I have defined two senses of this prefix: one for subjunctive
and the other for imperative. The null allomorph is one and the same. See (12).
(16) Imperative mood verb template

The parser gives the parses shown in (17) and (18) for the verb forms buxur and nuxurin which
mean eat! and do not eat! respectively. There are three possible parses of nuxurin meaning you do
not eat, do not eat!, or you might not eat. They are all legitimate meanings. These are shown in
(19). These parses are possible because the form nuxurin matches the three templates shown in (9),
(16) and (13).
(17)

(18)



10 Machine Parsing of Gilaki Verbs with Fieldworks Language Explorer
(19)

4.2 Forms Built on the Past Stem
Two main forms are built on the past stem form of the verb.

4.2.1 Perfective Aspect
The perfective aspect of the verb is built on the past stem of the verb. It takes the full set of subject

agreement suffixes and has the prefix bu-. It can take a negative prefix and like the subjunctive prefix,
the perfective prefix drops out when the negative prefix is present. In FLEx this form is modeled
with an optional negative prefix slot and obligatory perfective prefix and subject agreement suffix
slots. The template is shown in (20).
(20) Perfective aspect verb template

The perfective prefix that drops out is handled in the same way as in the subjunctive case. For this
prefix I have defined a null allomorph which is conditioned by the environment of having some letter
preceding it. The allomorph is defined as shown in (21) in my FLEx lexicon. When the perfective
template is being used to parse a negative perfective form, the parser requires there to be a prefix in



Imperfective Aspect 11
the Perfv slot. There is no overt perfective prefix to be found, so the parser uses the null allomorph
for the parse.
(21) Allomorph section of the perfective prefix entry showing a null allomorph

The parser gives the parses shown in (22) and (23) for the verb forms goftəm and nugoftəm which
mean I said and I did not say respectively.
(22)

(23)

4.2.2 Imperfective Aspect
The imperfective aspect is also built on the past stem. This form is built by having an imperfective

suffix -i attach to the stem followed by a subject agreement suffix. It also takes an optional negative
prefix. This form is modeled in FLEx with an optional negative prefix slot and two obligatory suffix
slots, first an imperfective suffix slot and then a subject agreement slot. The two suffix slots, merely
by their position relative to the stem, require the affixes contained in those slots to come in that
order. The template is shown in (24).
(24) Imperfective aspect verb template



12 Machine Parsing of Gilaki Verbs with Fieldworks Language Explorer
In Gilaki the progressive suffix is only seen overtly in the first person singular and in the third

person singular. In the other person/number cases the progressive suffix is merged into the subject
agreement suffix. For my analysis I have assumed that the progressive suffix is null in these cases.
For example, the word goftidi means you(pl)/they were saying and the parser gives the parse shown
in (25). Note that the progressive suffix is null in this case. For the word goftim there are two
possible meanings: We were saying or I was saying. Accordingly there are two parses for this word
both in the imperfective aspect. One has the overt progressive suffix and the other has the null
progressive suffix. The parses are shown in (26). To illustrate the negative form takes the form
nugoftidi. Besides the perfective meaning there is also an imperfective meaning. (27) shows two
parses meaning you(pl)/they were not saying and you(pl)/they did not say.
(25)

(26)

(27)

5 Tools for Parsing Gilaki Verbs

5.1 Using Templates
In section 4 above I showed different templates that I employ to model Gilaki verb morphology.

The power of using templates in FLEx is that it quickly constrains the parser as to which affixes can
be used and where. The FLEx parser can be used without employing templates, but then any number
of affixes can occur on a stem and there is no constraint on what order the affixes can occur in. If
the parser is not constrained with templates and other tools discussed below, it can find all kinds of
possible parses with your inventory of stems and affixes.



Using Features to Prevent Affixes from Attaching to Incorrect Verb Stems 13
A template can have one or more slots. In each slot you define which affixes are valid for that slot.

The affixes come from the lexicon. A slot can be optional or obligatory. By default a slot in FLEx
is obligatory unless it is marked as optional. If a slot is obligatory the parser will only successfully
parse a word if an affix in the slot is present.
In FLEx grammatical categories can be arranged in a hierarchy. I have defined several subcate-

gories of the category verb. The hierarchy I have used is shown in (28).
(28) Verb heirarchy

At every level in the verb hierarchy, one or more templates can be defined. In section 4 I showed
several templates that I have defined for the categories VerbPast and VerbPres. Since the categories
are set up in a hierarchy, template slots that I have defined at the top level (Verb) can be used at
any level below. In my model for Gilaki verbs, I defined a slot called SubAgr at the top level (Verb)
which contains all the subject agreement affixes and I use this slot throughout many templates at
lower levels of the hierarchy. The slot is shown in (29). Besides the advantage of using the same
slot in multiple templates, having one slot means that you have to only maintain one slot. So when
you discover you need to add another affix to the subject agreement slot for example, you only have
to add it in one place and it applies to all templates that are using that slot.
(29) Subject agreement template slot

In regards to this subject agreement slot, you may ask why there are suffixes that go on past stems
mixed in with suffixes that go on both past and present stems. The suffixes glossed ptcp and 3sg.pst
are two that only suffix to past stems. I experimented in FLEx with several models for handling this.
One option is to have one slot for past stem suffixes and another for present stem suffixes, but this
unnecessarily complicates the analysis. I found that it was simpler to put all the suffixes in one slot
and then disallow their joining to present stems using features. See section 5.2 for more information
on features.
5.2 Using Features to Prevent Affixes from Attaching to Incorrect Verb Stems
FLEx allows you to define a morpho-syntactic feature system for the language you are working

on. Things like gender, case, noun classes and much more can be modeled with features. For the



14 Machine Parsing of Gilaki Verbs with Fieldworks Language Explorer
Gilaki project I have used inflection features to mark stems and affixes as being past tense or present
tense. Every verb stem in the lexicon has been marked as either past or present. By examining the
Grammatical Info. Details section of the stem entry shown in (30), we see that the entry is tagged
with the inflection feature [absten:pst].7 In the sense section of the entry the feature "pst" is also
shown.
(30) Verb stem entry marked with the "pst" inflection feature

Stems that are present stems are similarly marked with "prs".
How can this marking with features keep incorrect affixes from co-occurring with certain stems?

When the parser in FLEx checks to see if an affix can attach to a stem, it checks to see if there is a
mismatch for a feature value. If there is a mismatch the possible parse is disallowed. As an example
let's take the 1sg.fut suffix -əmə. The entry is shown in (31).
(31) Verb suffix entry unmarked for tense

If we do not have -əmə marked for tense and we parse the word *bugoftəmə we will get the
following incorrect parse:
(32)

7absten is an abbreviation for absolute tense.



Using Environments to Force the Parser to Choose the Correct Allomorph 15
It is wrong because the 1sg.fut should not be allowed to attach to a past stem. If we add the

inflectional feature of present tense ("prs") to this affix as in (33) and try to parse this word again
we get the message: This word failed to parse successfully.
(33) Verb suffix entry marked for "prs" tense

If we research further with FLEx's "Try a Word" tool we see that the reason for the failed parse is
the incompatibility of the feature "pst" on the stem with the feature "prs" on the suffix.8 If we try
parsing the word gəme - I will say which is using the present stem we get the following successful
parse:
(34)

This parse succeeds because the feature "prs" on the stem matches the feature "prs" of the suffix.
Similarly if we tried to parse a present stem with a past suffix, it will fail because of the feature

mismatch.
5.3 Using Environments to Force the Parser to Choose the Correct Allomorph
In Gilaki as in many languages, there are different allomorphs in the language's lexicon and these

are conditioned by certain environments. When multiple allomorphs exist we would like the parser
to allow allomorphs when the environment condition is satisfied and disallow the allomorphs that
do not satisfy the environment condition.
One example of allomorphs and environments in Gilaki verbs is the bu- prefix which has allomorphs

bi-, bə-, b- and ∅-. The allomorph that attaches to a verb stem depends on the environment. See
the following table of example words:

Table 1 Allomorphs of bu-
Prefix Word Gloss
bu- bukunəm I might do
bu- buxosəm I might sleep
bi- bigirəm I might take

8The actual message is the following: The inflectional template named 'Perfective' for category 'VerbPast' failed
because at least one inflection feature of the stem is incompatible with the inflection features of the inflectional suffix
(-əmə (1sg.fut): -əmə). The incompatibility is for feature absten. This feature for the stem has a value of pst but the
corresponding feature for the inflectional suffix (-əmə (1sg.fut): -əmə) has a value of prs.



16 Machine Parsing of Gilaki Verbs with Fieldworks Language Explorer
Prefix Word Gloss
bə- bəkəšəm I might pull
b- bayəm I might come
∅- nigirəm I might not take, I do not take

So how do we model this in FLEx so that the parser correctly parses all these different forms,
but rejects malformed combinations such as *bikəšəm, *bugirəm, *bəxosəm and *bkunəm? What
we do is specify an environment for each allomorph and the parser will check if the environment
applies. Example (35) shows what the entry for prefix bu- looks like. The order of the allomorph is
important. The parser works from the top allomorph to the bottom. For each allomorph the parser
assumes the previous environment is negated. Note that the lexeme form is one of the allomorphs
for the entry and serves as the elsewhere allomorph, i.e. the last allomorph after all other allomorph
environments have not been satisfied. Also, to use classes in environments you need to have the
class defined in FLEx, and a class relies on phonemes having been defined in FLEx. (5), (6) and (7)
above showed some definitions of phonemes, natural classes and environments.
(35) Prefix entry with environment conditioned allomorphs

The table below shows which environment applies for which word:



Using Ad Hoc Rules to Prevent the Co-occurrence of Morphemes 17
Table 2 Environments for allomorphs of bu-
Word Environment(s) Comment
bukunəm / #_ [C] [VowUorO] Use bu- when followed by a consonant and

a "u" or "o". VowUorO is a class containing "u" and "o".
buxosəm / #_ [C] [VowUorO] Use bu- when followed by a consonant and

a "u" or "o". VowUorO is a class containing "u" and "o".
bigirəm / #_ [C] [Ye] Use bi- when followed by a consonant and

a "i". Ye is a class containing "i".
bəkəšəm / #_ [C] [VowəorA] Use bə- when followed by a consonant and

a "ə" or "a". VowəorA is a class containing "ə" or "a".
bayəm /_ [V] Use b- when followed by a vowel.
nigirəm / [V] _; / [C] _ Use ∅- when preceded by any letter

(vowel or consonant).

Environments can apply to any kind of allomorph. In Gilaki many verbs have more than one
allomorph for a stem. For example, the verb meaning to have has forms dašt and ašt. The form ašt
occurs in the negative form. So I have two allomorphs listed for this entry and an environment for
the form ašt which says it can only occur following an "n".
5.4 Using Ad Hoc Rules to Prevent the Co-occurrence of Morphemes
Using templates, features and environments can really make the parsing model work well. But

there are always situations where the parser is incorrectly allowing morphemes or allomorphs to
occur together. In this situation you can have some rules in FLEx that will disallow co-occurring
morphemes. I have primarily used these ad hoc rules to prevent clitics from co-occurring, but an
example in Gilaki verbs is the following: In Gilaki there is a present progressive auxiliary dər. Being
an auxiliary, this form would never have the participle suffix -ə. I have created an ad hoc rule that
prevents the participle from occurring after this stem. (36) shows the rule as it is defined in FLEx.
If I did not have this rule, I would get the two parses shown in (37). The 2nd is invalid and does not
get suggested by the parser when I have the rule in (36) defined.
(36) Ad Hoc Rule

(37)



18 Machine Parsing of Gilaki Verbs with Fieldworks Language Explorer
5.5 Other Tools
In addition to the tools described above, FLEx has other tools that can help constrain the parser.

These tools include Inflection Classes, Exception Features, Compound Rules and Stem Names. See
Black (2010) for a thorough treatment of how to use FLEx for various linguistic phenomena. This
paper is available under the Help -> Resources -> Introduction to Parsing menu in FLEx. I would
recommend a person read this paper before starting to develop a model for parsing in FLEx.

6 Using Arabic Script
FLEx is a program that fully supports the Unicode standard of representing character encodings.

Because of this nearly any complex script can be used in FLEx. Even scripts that are not supported
by current operating systems can be supported by using an SIL rendering engine called Graphite.
Arabic script is supported in FLEx, and even the user interface can be changed to use a language

written in Arabic script. The interface has been translated to Persian for most common interface
items. Whereas right to left support in FLEx could be better, I think it is usable and hopefully we
can encourage the FLEx development team to make it better.
Since Gilaki is most often written in Arabic script, I have done quite a bit of work getting FLEx to

parse Gilaki texts written in Arabic script. I have even been fairly successful at having a system that
will work with both scripts. I want to list here some of the issues that come up with using Arabic
script in general and show specific examples of parsing Gilaki verbs.
6.1 Sample Parse
The Arabic script equivalent of the parse in (14) is shown below in (38).
(38)

The parse looks as you would expect with the first affix starting in the right column. What differ-
ences are there in the lexicon to support multiple scripts? (39) shows the stem entry used above and
(40) shows the prefix entry. Note how the lexeme forms are written in both Arabic script and Latin
script.9 Note that there are two scripts written for the allomorph shown in (40) as well.

9In (3) and in other examples, the Arabic script line was hidden by choosing to hide the Gilaki Arabic writing system
which is indicated by Gil in example (39).



Dealing with Diacritics 19
(39) Stem entry with two scripts

(40) Prefix entry with two scripts

6.2 Dealing with Diacritics
In Gilaki some clitics are written only with a diacritic. While it is sometimes tricky to work with

diacritics and get your cursor where you think it should be,10 it does actually work to give a diacritic
its own entry.
6.3 Phonemes and Natural Classes
When defining phonemes in FLEx in a system that uses both Arabic and Latin script it can be

tricky deciding how to set it up because of the lack of a one-to-one relationship between Arabic
10In FLEx to move your cursor left or right including going before and after diacritics, use the F7 and F8 keys.



20 Machine Parsing of Gilaki Verbs with Fieldworks Language Explorer
script phonemes and Latin script phonemes. For example a "ye" in Gilaki can correspond to "i" or "y"
in Latin script. A Latin "s" can correspond to "sin", "sād" or "se" in Gilaki. The approach I've taken
thus far is to define each Arabic script letter as a phoneme and give one corresponding Latin letter
even though this creates duplicate Latin phonemes.
As far as Natural Classes are concerned, I've found it helpful to define a class that will cover both

the Arabic script phonemes and the Latin. Even if you have to refer to a single phoneme, it is better
to create a class that will correspond to the Arabic and Latin versions. If instead you write a literal
phoneme into an environment rule, that rule will only be valid for the script in which that literal
phoneme was written. The class [Ye] is an example you have noticed above.
6.4 Issues Arising from the ZWNJ character
In Gilaki Arabic script writing, the Zero Width Non-Joiner (ZWNJ11) character is used to keep two

letters from joining while keeping them next to each other. For some enclitics in Gilaki there is an
allomorph with a ZWNJ and one without it. Which one is used depends on the preceding letter.12
In Latin script this is not a problem; there would be one allomorph instead of two. So how do we
have an entry that contains both the Arabic script versions of the allomorphs and the Latin script
version? My solution has been to keep the Latin form with the Arabic form that has the ZWNJ. The
Arabic allomorph form that does not have the ZWNJ would stand alone without a Latin version.
6.5 Entering Texts and Interlinearizing Them
When using multiple writing systems in FLEx (i.e. Arabic script and Latin script), you have to

keep straight which script you are currently working with. One place this comes up is when you are
inserting a new text into FLEx. When you make the insert you are asked which writing system the
text is written in. Once this is chosen the text must be written in that writing system and you cannot
change to another writing system.
Working on interlinear texts in FLEx that are in Arabic script is pretty much the same as with

Latin script. The main thing you have to get used to is working with the right-to-left orientation of
everything. Here is a sample of interlinear text with Arabic script.

11Unicode value: 200C.
12I had a choice to make in my analysis. Either I had to create two allomorphs of the stem, one with the ZWNJ and

one without or create two allomorphs of the enclitic. The simpler solution seemed to be to have the duplication in one
enclitic entry instead of in many root entries.



Default Writing System 21
(41) Interlinearized Arabic script text

6.6 Default Writing System
When using a FLEx project with multiple writing systems, one writing system is always assigned

as the default vernacular writing system. It is important to know which is your default because that
will be the writing system that searches usually will be done in13 and some columns will be initially
set to display the default writing system. In relation to parsing the default vernacular writing system
is what will be used in the "Try a Word" parsing tool. Also phonemes and environments will be keyed
off of this writing system.
It is easy to switch which writing system is your default vernacular writing system using the arrow

buttons shown in the window below.
13In some searches like Find Entry in the Lexicon Edit view the default writing system is selected, but you can choose

to search in another writing system.



22 Machine Parsing of Gilaki Verbs with Fieldworks Language Explorer
(42) Buttons for changing default writing system

7 Uses for Machine Parsing in FLEx
One could argue that it is very helpful to set up a parsing system for a language just in order to

develop a good model of how the morphology of the language works. It also could be argued that it
is a good tool for discovering what is going on in a language. Besides these things I want to discuss
two practical benefits of setting up parsing for a language in FLEx.
7.1 Automated Interlinear Texts
Interlinear texts are a critical component of language documentation and analysis. FLEx does a

very good job of helping you create interlinear texts and has a tight link between the lexicon and
texts. Breaking words into morphemes and glossing them can be done manually in the Interlinear
Texts view of FLEx or it can be done more automatically with the parser.
Using the manual method is not bad and FLEx assists greatly by looking up morphemes and giving

suggestions as to which lexical item it may be. It will also remember a word that was "approved" as
an analysis and suggest that analysis the next time the word appears in the text.
Using the parser to assist in breaking words into morphemes is an even better method assuming

you have at least some of the preparation work above. Of course the more preparation work you do
the more information you make available to the parser allowing for better overall results.
The biggest advantage of using the parser for automatically creating analyses for words is that

it prevents human error. It is quite easy to choose morphemes the manual way, but they may
actually be the wrong forms and not what you want. These errors magnify when there are many
homophonous forms that are distinct lexical entries. Let's look at an example of a manual parse
versus a machine parse. Let's take the word nugoftəm as an example.



Automated Interlinear Texts 23
(43) Manual parse

In (43), I have broken the word into morphemes manually. One prefix and one suffix. There's a
problem here though. In (23) above, we were requiring there to always be a perfective prefix which
is sometimes realized as a null prefix. So in (43) I have forgotten to put the null prefix there. If I do
a machine parse of this word, a parse such as (43) will not even be suggested because it is not valid
according to my perfective template in (20). The parse I get is shown below in (44). The background
is a peach color which indicates that the suggested parse or analysis is from the parser. Note that
this parse includes the null perfective prefix.
(44) Machine parse

Throughout your text the FLEx parser will have these parser suggested analyses, so a lot of the
manual work of breaking the words into morphemes and selecting the correct lexical entry is saved.
Also it prevents the human error of incorrectly parsing the word.
There are of course going to be times when the parser suggests more than one analysis in the

interlinear text. How does this function? Let's take an example word we used above, nugoftidi. We
expect the parser to give us two parses as shown in (27). By default, the word will get set to the
first analysis that the parser comes up with. Again the background will be in a peach color. It will
look like (45) below. When we visit this word in the text and click on the arrow to the left of the
word we see two suggested parses in the list of analyses to choose from as shown in (46) below. If
I select the second one the end result is shown in (47). This is the process you have to go through
when there are multiple parses suggested by the parser.
(45) First machine parse



24 Machine Parsing of Gilaki Verbs with Fieldworks Language Explorer
(46) List of two machine parses

(47) Second machine parse after being selected

I think you can see how the parser does a lot of the work for you. This can save hours and hours
of work when dealing with a lot of text data.
7.2 Morphological Spelling-Checking
Another practical help that I want to point out is that of doing morphological spelling-checking of

a text. When you run the parser on a text FLEx will compile a list of all of the analyses for all the
words in that text. By looking at the results, you can see very easily which words have been parsed
successfully and which have not. Here are some examples to illustrate.
Let's say you have a new text where you want to check the spelling. The first step is to create a

new text and paste in the text contents. Assign a Genre temporarily to this text that is unique from
all other texts. Then tell FLEx to parse all the words in this text. Next, display the Word Analyses
view and filter for the Genre you gave to the text. Sort the list of words by Predicted Analyses to
quickly see which words have 0 or more analyses. (48) below shows a sample list.
(48) Portion of the wordforms view



References 25
When the predicted analyses column shows 0, this means the parser could not parse the word. The

word could be misspelled, it could be that the word stem is not in the lexicon or it could be that
your analysis model is not allowing a well-formed word.
This kind of morphological spelling-checking is very useful for languages with lots of morphemes.

It can get very cumbersome to maintain a list of all possible inflections of a word in a spelling list.
By doing a morphological spelling-check with FLEx you quickly see which words are ill-formed.

References
Black, Andrew H. 2010. A Conceptual Introduction to Morphological Parsing for Stage 1 of the Fieldworks Language

Explorer. SIL International. Manuscript.
Rastorgueva, V.S. et al. 1971. Giljanskij jazyk. Moscow: Nauka.


	Abstract
	1  Introduction to FLEx
	2  The FLEx Parser
	3  Setting up FLEx for Parsing
	3.1  Lexicon
	3.2  Phonemes
	3.3  Natural Classes
	3.4  Environments
	3.5  Templates

	4  Modeling Gilaki Verb Morphology with Templates
	4.1  Forms Built on the Present Stem
	4.1.1  Simple Aspect
	4.1.2  Subjunctive Mood
	4.1.3  Imperative Mood

	4.2  Forms Built on the Past Stem
	4.2.1  Perfective Aspect
	4.2.2  Imperfective Aspect


	5  Tools for Parsing Gilaki Verbs
	5.1  Using Templates
	5.2  Using Features to Prevent Affixes from Attaching to Incorrect Verb Stems
	5.3  Using Environments to Force the Parser to Choose the Correct Allomorph
	5.4  Using Ad Hoc Rules to Prevent the Co-occurrence of Morphemes
	5.5  Other Tools

	6  Using Arabic Script
	6.1  Sample Parse
	6.2  Dealing with Diacritics
	6.3  Phonemes and Natural Classes
	6.4  Issues Arising from the ZWNJ character
	6.5  Entering Texts and Interlinearizing Them
	6.6  Default Writing System

	7  Uses for Machine Parsing in FLEx
	7.1  Automated Interlinear Texts
	7.2  Morphological Spelling-Checking

	References

