Python for FlexTools and FLEx 9.1

Ken Zook
August 16, 2024

Contents
Python for FIEXTOOIS and FLEX 9.1ocviiiiiece et 1
R 1011 oo [0 Tox 1 o o PSSP RRR 2
2 Using Python in a FIEXTOO0IS MOAUIE.........cccooviiiei e 2
3 Using Python console in @ Cmd WINAOW ..ot s 3
3.1 Display a textual form of an object using Print()ccceeeviieiieiesieieee e 5
3.2 Class of 0DJECt USING _ ClASS_cveieiiieieic e 5
3.3 Methods available on an object USING dir()ccccveiieiieieiiecr e 6
3.4 Details on amethod USING _ 0OC_ .ooveiiiieiieieeie e 7
3.5 Using non-Roman scripts in Python ConSoleccccviiiieiicc s 8
4 Working with Dasic FLEX PrOPEItIES........cc.ciiiiiiiiiiiniiieiee et 8
Nt S 1 1o SRS PR SRS 8
411 FIeldWOIKS StIINGSooveeiieiieieieie ettt 9
O I U 1 o [oo o PSS PSORTT P URURPRPRN 9
O I B 1 1100 TR PP TP P PP URURPRON 9
414 MUTUNICOUEiiiiiiiiiieicieie ettt sbe st renneas 9
415 MUBISTIING ..o bbbt 10
I T 53 1 1o SRRSO 11
4.1.6.1 TSSENG CIASS.....eeiuieiieiiiieie et 11
4.1.6.2 Incremental String BUIIAET...........coveiiiiecece e 11
4.1.6.3 SENG DUIHAET ..o 12
4.1.6.4 CompParing TSSINGSeeiieiieiieieee sttt sre e raesreenee s 13
4.1.6.5 Finding SUBSEINGS IN TSSTINGS ...ccveiviiiiiiiieieie e 13
4.2 Other DaSiC PrOPEITIES.cviivieieiieite ettt be et sreesreenee e 14
O R = To T] 1= g (TSR 14
A [11 (=10 T £ TR PSPPI 15
O T 112 3-SR 15
A28 GUIDS ...ttt bbbttt b re e 15
A.2.5 GENDALES. .. oot b et be et 15
O T = T V2SSOSR 15
5 USING FACIOTIES ...ttt bbbttt sb e bbb b 16
I O LY g To (=T 001 1 (0] [USSP 17
7 Using Atomic owning and reference Propertiesccoeererereneseseseeieresee e 18
8 Using Sequence owning and reference PropertiesS........ccvcveeieeeiieiieiieesie e siee e see e 19
9 Using Collection owning and reference Properties.o rererereresieseeiieniesesie e 20
10 USING CUSTOM FIEIAS.eiiiiecie et re e e 22
10.1 Getting information on Custom FIElUSccoiiiiiiiii 22
I [(=T o T SRR 24
10.3 8 — GENDALE.......eeiiie ittt e 25
O T {1V SRS PR TRPRSR 25
10.5 16 — MUIIUNICOUEoveeireeie sttt nne e e e ne e nneenes 25

8/16/2024 1

FLEx Conceptual Model Page 2

10.6 23 — OA MUIIPArAgraPhveveeiece et ae e e sneees 26
10.7 24 — RA List Reference (SINGIe ITBM)......ccoiiiiiiiiiieiiee e e 26
10.8 26 — RC List Reference (multiple itemS)cccvecviiiieiececeee e 27
11 Additional 0BJECt MEtNOUSoiiiiiiee e 28
0 |V 1= 0T T 0]] =T £ OSSR 28
11,2 EQUAL OBJECLS ...ttt bbbt 29
G B 1= [=1] T [0 o] =T £ OSSR 29
12 Building a FLEX entry uSing PYENONcccoiiiiiiiiecee e 29
13 Creating an entry, analysis, and text using PYtNONccccccooieiieie e 35

1 Introduction

FieldWorks Language Explorer (FLEX) 9.1.25 is a program for developing dictionaries with any
number of languages or writing systems, specifying grammar features, analyzing texts, parsing
texts, and developing a research notebook (https://software.sil.org/fieldworks/).

FlexTools 2.3.1 is a program that allows Python scripts to read and/or modify data in a FLEX
project using FLEx underlying code (https://github.com/cdfarrow/FLEXTools/wiki), thus
allowing skilled users to do tasks that are not feasible to do directly in FLEx. This program
provides many shortcuts for doing common things that can’t be done directly in FLEX.

This document gives an introduction to Python code that can be used in FlexTools or through the
Python console to access and modify data beyond the numerous methods provided in FlexTools.
It provides Python code to access FLEx data through the LCM (SIL Language & Culture Model)
library. FlexTools uses Python 3.12 (https://www.python.org/downloads/).

This document assumes a basic understanding of the FLEx conceptual model as described in
https://downloads.languagetechnology.org/fieldworks/Documentation/FLEx%209.1%20Concept
ual%20Model.pdf.

2 Using Python in a FlexTools module

FlexTools will not allow you to open a project if FLEX, or any other program, already has that
project open. There is an option in FLEX that allows you to use FlexTools with FLEx open. To
set this mode in FLEX, go to File > Project Management > FieldWorks Project Properties >
Sharing, and check “Share project contents with programs on this computer”.

For the various examples given in remaining sections, the following imports are needed at the
beginning of the module:

from SIL.LCModel import *

from SIL.LCModel.Core.Kernellnterfaces import ITsString, ITsTextProps, ITsStrFactory,
ITsPropsFactory, ITsStrBlIdr, ITsIncStrBldr, ITsPropsBIdr, ITsMultiString, FwTextPropType,
FwTextPropVar

from SIL.LCModel.Core.Text import TsStringUtils, TsIncStrBIdr, TsStrBIdr, TsStringComparer
from SIL.LCModel.Core.Cellar import CellarPropertyType, CellarPropertyTypeFilter, GenDate
from SIL.LCModel.Core.WritingSystems import CoreWritingSystemDefinition

from SIL.LCModel.Infrastructure import IFwMetaDataCacheManaged

from System import Guid, String, DateTime, Byte

import unicodedata

8/16/2024

https://software.sil.org/fieldworks/
https://github.com/cdfarrow/FLExTools/wiki
https://www.python.org/downloads/
https://downloads.languagetechnology.org/fieldworks/Documentation/FLEx%209.1%20Conceptual%20Model.pdf
https://downloads.languagetechnology.org/fieldworks/Documentation/FLEx%209.1%20Conceptual%20Model.pdf

FLEx Conceptual Model Page 3

FlexTools typically uses ‘project’ to get to the FLEx project, and project.project to get to the
LCM cache. The variable for the project is the first parameter to the module definition. My
preference is defining some other names starting with project as the project name.

The following definitions are used in the rest of this document.

#H

def PythonTest(project, report, modifyAllowed):
#
cache = project.project

Ip = cache.LangProject

sl = cache.ServiceLocator
lexicon = Ip.LexDbOA

wsv = cache.DefaultVernWs
wsa = cache.DefaultAnalWs

These variables then represent these objects:

project flexlibs.code.FLEXProject.FLEXProject

cache the LCM cache, SIL.LCModel.LcmCache

Ip the LangProject object SIL.LCModel.lILangProject

sl the Service Locator SIL.LCModel.lLcmServicelLocator
lexicon the lexical database object SIL.LCModel.ILexDb

WSV the top Vernacular writing system int

wsa the top Analysis writing system int

Debugging a script can be somewhat challenging within FlexTools. When something is wrong,
you’ll see something like this in the output window.

& Running ZookPythonTest (version 1)...
€3 Module failed with exception System NullReferenceException! Use Ctrl-C to copy this report to the clipboard
¥ Processing completed with 1 error and 0 warnings

You can hover over the red line to get some error information, or use Ctrl-C and then paste it into
an editor where you can see more detail. Sometimes the error report will lead you to an obvious
error in your code that can be corrected to move on. Especially when starting out, it can be very
challenging to know what to do about the error because there isn’t any way in FlexTools to get
information on the underlying code. Using Python console in a Cmd window provides additional
information that can often be helpful. This is described in the next section.

Note FlexTools has a Help > API Help menu which documents the FlexTools methods including
where they are installed on your machine.

3 Using Python console in a Cmd Window

With FlexTools installed and working, it’s often helpful to run part of a Python script in a
Windows Cmd window as this environment provides more help in debugging problems than you
get in the FlexTools program. The Python console provides an excellent interactive way to
access data from a FLEX project and allows you to make changes to the project directly from the
console.

If you open a Cmd window and type py, you will get to the Python console with the >>> prompt.

8/16/2024

FLEx Conceptual Model Page 4

R -

| E¥ Command Prompt - py — O >

At this point you can type Python code, or paste a Python script. Ctrl+Z at the >>> prompt will
close the Python console.

The minimal code to access FLEX code using FlexTools code is the following

import flexlibs
flexlibs.FLEXInitialize()

project = flexlibs.FLExProject()
project.OpenProject('PythonTest')
Additional code here
project.CloseProject()
flexlibs.FLExCleanup()

This works well if your code is not modifying the FLEX project. If your code needs to modify the
FLEX project, the OpenProject method has an optional second parameter, that if set to True, will
allow you to make changes to the FLEX project and save them when you CloseProject. The
following code will open FLEX project PythonTest and add a minimal LexEntry to the project.

import flexlibs

cache = project.project

flexlibs.FLEXInitialize()

from SIL.LCModel import *

project = flexlibs.FLExProject()
project.OpenProject('PythonTest', True)

entry = cache.ServiceLocator.GetService(ILexEntryFactory).Create()
project.CloseProject()

flexlibs.FLExCleanup()

In case you fail to include the True parameter and you want to make changes without restarting,
this can be done with these steps. Before making changes you want to save, start a NonUndoable
task.

cache.MainCacheAccessor.BeginNonUndoableTask()

Make whatever changes you want at this point, then give the following commands to save the

changes to fwdata and close the project connection.
cache.MainCacheAccessor.EndNonUndoableTask()
cache.ServicelLocator.GetService(lUndoStackManager).Save()

project.CloseProject()
flexlibs.FLExCleanup()

For experimenting with the Python console, the following code can be executed after using py
from the Cmd window to get into the Python console. This code will import all the modules
needed for code in this document, open an existing ‘PythonTest’ project for updating FLEX, and
setting common variables used in this document, and getting the first entry from the lexicon. If
you don’t want to save any changes you were making, use Ctrl+Z to exit the console without
executing CloseProject.

8/16/2024

FLEx Conceptual Model Page 5

import flexlibs

from SIL.LCModel import *

from SIL.LCModel.Core.Kernellnterfaces import ITsString, ITsTextProps, ITsStrFactory,
ITsPropsFactory, ITsStrBlIdr, ITsIncStrBIdr, ITsPropsBIdr, ITsMultiString, FwTextPropType,
FwTextPropVar

from SIL.LCModel.Core.Text import TsStringUtils, TsIncStrBldr, TsStrBIdr, TsStringComparer
from SIL.LCModel.Core.Cellar import CellarPropertyType, CellarPropertyTypeFilter, GenDate
from SIL.LCModel.Core.WritingSystems import CoreWritingSystemDefinition

from SIL.LCModel.Infrastructure import IFwMetaDataCacheManaged

from System import Guid, String, DateTime, Byte

import unicodedata

flexlibs.FLEXxInitialize()

project = flexlibs.FLExProject()

project.OpenProject('PythonTest', True)

project.ProjectName()

cache = project.project

Ip = cache.LangProject

lexicon = Ip.LexDbOA

sl = cache.ServiceLocator

mdcm = IFwMetaDataCacheManaged(cache.MetaDataCacheAccessor)

ddbf = cache.DomainDataByFlid

wsv = cache.DefaultVernWs

wsa = cache.DefaultAnalWs

entry = next(iter(lexicon.Entries))

3.1 Display a textual form of an object using print()

If you simply type a variable name and Enter, it may give useful information as shown in the
first example below. At least it identifies it as a LexEntry. The print() method displays a textual
form of an object, or an entire expression. In the second case below it is returning the HVO of
the LexEntry.

>>> entry = cache.ServiceLocator.GetService(ILexEntryFactory).Create()
>>> entry

<SIL.LCModel.lLexEntry object at 0x0O00002EFF68511C0>

>>> print(entry)

LexEntry : 11330

The following print statement would display the headword.
print(entry.HeadWord)

3.2 Class of object using __class___

The __class__ method on a variable will display the class of the variable. For example, after
creating a new entry we can verify that it worked with this command

>>> entry = cache.ServiceLocator.GetService(ILexEntryFactory).Create()
>>>entry._ class__
<class 'SIL.LCModel.ILexEntry'>

This confirms that the entry object we received from this method is actually an interface for a
LexEntry object.

8/16/2024

FLEx Conceptual Model Page 6

3.3 Methods available on an object using dir()

The dir() command will give the methods that are available on an object. To find out what’s
available on the entry object, we can use this command.

>>> entry = cache.ServiceLocator.GetService(ILexEntryFactory).Create()

>>> dir(entry)

[AddComponent’, ‘AllAllomorphs’, 'AllOwnedObijects’, 'AllReferencedObjects’, 'AllSenses’,
'‘AlternateFormsOS', 'Bibliography’, 'Cache’, 'CanDelete’, 'ChangeRootToStem', 'CheckConstraints',
'ChooserNameTS', 'CitationForm', 'CitationFormWithAffixType', 'ClassID’, 'ClassName’, ‘Comment’,
'‘ComplexFormEntries’, 'ComplexFormEntryRefs', 'ComplexFormsNotSubentries’,
'CreateVariantEntryAndBackRef', 'DateCreated’, 'DateModified’, 'Delete’, 'DeletionTextTSS',
'DialectLabelsRS', 'DoNotPublishinRC', 'DoNotShowMainEntryInRC', 'DoNotUseForParsing’,
'EntryRefsOS', 'Equals’, 'EtymologyOS', 'FindMatchingVariantEntryBackRef',
'FindMatchingVariantEntryRef', 'FindOrCreateDefaultMsa’, 'GetDefaultClassForNewAllomorph',
'‘GetHashCode', 'GetObject’, 'GetType', 'Guid’, 'HasMoreThanOneSense', '"HeadWord',
'HeadWordForWs', 'HeadWordRef', '"HeadWordRefForWs', 'HeadWordReversalForws',
‘HomographForm', ‘HomographFormKey', ‘HomographNumber', ‘Hvo', 'Ild', 'ImportResidue’,
'IndexInOwner’, 'IsCircumfix’, IsComponent’, 'IsFieldRelevant’, 'IsFieldRequired’,
'IsMorphTypesMixed', 'IsOwnedBY', 'IsValidObject', 'IsVariantOfSenseOrOwnerEntry', 'LIFTid',
‘LexEntryReferences’, ‘LexemeFormOA', 'LiftResidue’, 'LiteralMeaning’, 'LookupComplexEntryType',
'MLHeadWord', 'MainEntriesOrSensesRS', 'MakeVariantOf', 'MergeObject’, 'MinimalLexReferences',
‘MorphTypes', ‘MorphoSyntaxAnalysesOC', 'MoveSenseToCopy', ‘NumberOfSensesForEntry’,
'‘ObjectldName’, 'OwnOrd’, 'OwnedObijects’, ‘Owner’, 'OwnerOfClass', 'OwningFlid’,
'PicturesOfSenses', 'PostClone’, 'PrimaryMorphType', 'PronunciationsOS', '‘PublishAsMinorEntry’,
'Publishin’, 'ReferenceTargetCandidates', 'ReferenceTargetOwner', 'ReferringObjects’,
'ReplaceMoForm’, 'ReplaceObsoleteMsas’, 'Restrictions', 'Self', 'SenseWithMsa', 'SensesOS',
'Services', 'SetLexemeFormAlt', 'ShortName', 'ShortNameTSS', 'ShowMainEntryln', 'SortKey',
'SortKey?2', 'SortKey2Alpha', 'SortKeyWs', '‘Subentries', 'SummaryDefinition’,
'SupportsinflectionClasses', 'ToString', 'VariantEntryRefs', 'VariantFormEntries',
‘VariantFormEntryBackRefs', 'VisibleComplexFormBackRefs', 'VisibleComplexFormEntries',

'VisibleVariantEntryRefs',' class_',' delattr_'," dir_'' doc_ ' ' eq_' ' format_ ',
' _ge_ ',' getattribute_',' getstate ' gt ' hash_'' init_' ' init_subclass_ ',
e It 'Y module_',' ne_ ' new_',' reduce_',' reduce_ex_',' repr_',
' setattr',' sizeof '’ str_ '/’ subclasshook_ ', 'get_AllAllomorphs', 'get_AllOwnedObjects',

'get_AllSenses', 'get_AlternateFormsOS', 'get_Bibliography', 'get_Cache’, 'get_CanDelete’,
‘get_ChooserNameTS', 'get_CitationForm', 'get_CitationFormWithAffixType', 'get_ClassID’,
'get_ClassName', 'get_ Comment', 'get_ ComplexFormEntries', '‘get_ComplexFormEntryRefs',
'‘get_ComplexFormsNotSubentries', 'get_DateCreated', 'get_DateModified', 'get_DeletionTextTSS',
'get_DialectLabelsRS', 'get_DoNotPublishinRC', 'get_DoNotShowMainEntryInRC',
'‘get_DoNotUseForParsing', 'get_EntryRefsOS', 'get_ EtymologyOS', 'get_Guid',
'‘get_HasMoreThanOneSense', 'get_ HeadWord', 'get_ HeadWordRef', 'get HomographForm’,
‘get_HomographFormKey', 'get_ HomographNumber', ‘get_Hvo', 'get_Id', 'get_ImportResidue’,
‘get_IndexInOwner', 'get_IsMorphTypesMixed', 'get_IsValidObject’, 'get_LIFTid',
‘get_LexEntryReferences', 'get_LexemeFormOA', 'get_LiftResidue’, 'get_LiteralMeaning’,
‘get_LookupComplexEntryType', 'get. MLHeadWord', 'get_MainEntriesOrSensesRS',
‘get_MinimalLexReferences', 'get_MorphTypes', 'get_MorphoSyntaxAnalysesOC',
‘get_NumberOfSensesForEntry', 'get_ObjectldName’, 'get_OwnOrd’, 'get_ OwnedObjects',
'‘get_Owner', 'get_ OwningFlid', 'get_PicturesOfSenses’, 'get_PrimaryMorphType',
'‘get_PronunciationsOS', 'get_PublishAsMinorEntry', 'get_Publishin’, 'get_ReferringObjects’,
'get_Restrictions', 'get_Self', 'get_SensesOS', 'get_Services', 'get_ShortName', 'get_ShortNameTSS',
'‘get_ShowMainEntryln', 'get_SortKey', 'get_SortKey2', 'get_SortKey2Alpha', 'get_SortKeyWws',
'‘get_Subentries', 'get_ SummaryDefinition’, 'get_VariantEntryRefs', 'get_VariantFormEntries',
'get_VariantFormEntryBackRefs', 'get_VisibleComplexFormBackRefs',
‘get_VisibleComplexFormEntries', 'get_VisibleVariantEntryRefs', 'set_DateCreated',

8/16/2024

FLEx Conceptual Model Page 7

'set_DateModified', 'set_DoNotUseForParsing', 'set_ HomographNumber', 'set_ImportResidue’,
'set_LexemeFormOA', 'set_LiftResidue’]

There are obviously a lot of methods available on LexEntry.

3.4 Details on a method using __doc___

Suppose you see “HeadWordForWs” and would like to know what parameters are needed. The
__doc__ method gives minimal information about the methods. The following example shows
that the HeadWordForWs method takes an Int32 as an argument.

>>> entry = cache.ServiceLocator.GetService(ILexEntryFactory).Create()
>>> entry.HeadWordForWs.__doc
'SIL.LCModel.Core.Kernellnterfaces.|TsString HeadWordForWs(Int32)'

It doesn’t tell you what the Int32 represents, but it’s at least a clue. In this case the Int32 is a
writing system identifier integer.

Here’s another example checking on the IsOwnedBy method, which tells us the method expects
a CmObject, or subclass as a parameter.

>>> entry = cache.ServiceLocator.GetService(ILexEntryFactory).Create()
>>> entry.IsOwnedBy. _doc___
'‘Boolean IsOwnedByYy(SIL.LCModel.ICmObject)’

This shows some of the responses you might get when trying to use unfamiliar methods. The
first attempt fails because it is a bound method, which means it needs arguments. The second
attempt with null arguments shows that it is expecting some argument, but it doesn’t tell you

what it’s looking for. The doc method answers that question that it is looking for a
CmObiject.

>>> entry = cache.ServiceLocator.GetService(ILexEntryFactory).Create()
>>> entry.IsOwnedBy
<bound method 'IsOwnedBy'>
>>> entry.IsOwnedBY()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: No method matches given arguments for ICmObject.IsOwnedBY: ()
>>> entry.IsOwnedBy.__doc___
'‘Boolean IsOwnedBy(SIL.LCModel.ICmObiject)'

If you have an HVO and want to get information on the object, you can use code similar to this.

>>> entry = sl.GetObject(9409)

>>> print(entry.Guid)
ded6e683-0e6d-4569-9941-83dd203cafcd

>>> entry

<SIL.LCModel.ICmObject object at 0x0000023F7F6814C0>
>>> entry.ClassName

'‘LexEntry’'

>>> entry = ILexEntry(entry)

>>> entry

<SIL.LCModel.IlLexEntry object at 0x0000023F7F680D80>

You can get the CmObject using the service locator GetObject method using the HVO or a guid.
If you want the guid in order to find it in fwdata or for some other purpose, you can use the Guid
property. If you just type entry without anything else, it gives some basic information showing

8/16/2024

FLEx Conceptual Model Page 8

that the entry is not really an entry, but an instance of CmObject. So, at this point it only provides
methods that are available on CmObject. ClassName is one method that will show what kind of
CmObiject it is. In this case it shows that it is a LexEntry. Knowing the class, you can cast it to
ILexEntry to get an actual instance of LexEntry which then allows you to use any methods on
LexEntry.

3.5 Using non-Roman scripts in Python console

A Cmd window is not an ideal environment for working with non-Roman scripts. For example,

if a citation form has “wordagfa YQUBL” when you print this out in the Python console, it looks
like this:

»>»> print{entry.Headlord)

worda e [a Y T, 2

If you copy it from the console, it actually has the correct characters: wordag[a YTEL2.

From the Python console, you can also paste in Unicode characters and it will work properly
even though the display is limited.

>>> entry.CitationForm.set_String(wsv, "-00 wordééfa’Yﬁ'@")

>>> print(entry.HeadWord)
+00 © wordasfa Y UE

When entering data in the console you can also use the Unicode values (e.g., a\u03b2b will result
in apb. \u is used for 4-hex-digit Unicode values, and \U is used for 8-hex-digit values for the
upper planes of Unicode.

4 Working with basic FLEXx properties

4.1 Strings

FieldWorks uses various methods for storing strings on objects, depending on the amount of
information it needs to store. See section 2.3.1 in
https://downloads.languagetechnology.org/fieldworks/Documentation/FLEXx%209.1%20Concept
ual%20Model.pdf for more detail on this.

Note that internally, FieldWorks stores strings in Unicode NFD (normalization decomposed)
format. When you get a string from the database using FlexTools, it will be in NFD, so your
Python program will need to handle this properly. When storing strings from FlexTools, it would
be best to convert it to NFD. FieldWorks normally converts all data to NFC when it goes into the
clipboard or is saved to disk, but when it is loaded from fwdata, imported from other files, or a
person is typing or pasting, it converts the data to NFD to be consistent with what’s in memory.
But FlexTools is working directly on the internal data. If you write NFC data, it will stay that
way until FLEX closes the project and reopens it. When reopened, it will be changed to NFD
internally along with all other strings.

8/16/2024

https://downloads.languagetechnology.org/fieldworks/Documentation/FLEx%209.1%20Conceptual%20Model.pdf
https://downloads.languagetechnology.org/fieldworks/Documentation/FLEx%209.1%20Conceptual%20Model.pdf

FLEx Conceptual Model Page 9

You can convert a string to NFD in Python using this code which converts NFC (61 e0 62) to
NFD (61 61 300 62). The NFC a with grave accent (e0) is changed to NFD ‘a’ with a combining
acute accent (61 300).

s = unicodedata.normalize('NFD', ‘aab’)

4.1.1 FieldWorks strings

There are two basic types of strings in FieldWorks. The names are somewhat misleading because
all data is in Unicode. But in this context, Unicode means a Unicode string without any
embedding, and String is a Unicode string that allows embedding. Then both of these types can
be in a multi property that allows multiple strings in different writing system alternatives.

4.1.2 Unicode

The LiftResidue property on LexEntry is an example of a Unicode string. Assuming ‘entry’ is a
LexEntry object, this code retrieves the string from LiftResidue:

Ires = entry.LiftResidue
This sets LiftResidue to ‘abc’:

entry.LiftResidue = 'abc’

4.1.3 String

The ImportResidue property on LexEntry is an example of a String string. Assuming ‘entry’ is a
LexEntry object, this code retrieves the string from ImportResidue:

ires = entry.ImportResidue
In this case, ires is really an ITsString. If you need a simple string, you can use this command:
ires = entry.ImportResidue. Text

To set a String property, you need to have a TsString that includes text and a writing system.
This is a simple way to set ImportResidue to ‘Simple string’ in the first analysis writing system.

entry.ImportResidue = TsStringUtils.MakeString('Simple string.', wsa)

4.1.4 MultiUnicode

The Form property of the MoForm owned by the LexemeForm property of LexEntry is an
example of a MultiUnicode string. Assuming ‘entry’ iS an entry object and ‘wsV’ is the first
vernacular writing system, this command retrieves the string from the lexeme form:

If = entry.LexemeFormOA.Form.get_String(wsv)

Note that get_String returns an ITsString. To get a plain string from this, you may need to
append the . Text method. This is needed when you are searching for a string. For example,

if entry.LexemeFormOA.Form.get_String(wsv).Text == "maison":

MultiUnicode and MultiString provide an optional way to specify a writing system other than
specifying an actual writing system. These options are available for a property that may have
multiple writing systems with data.

| Method name | Description

8/16/2024

FLEx Conceptual Model Page 10

BestAnalysisAlternative The first analysis writing system, or if not present, any
other analysis alternative.
BestVernacularAlternative The first vernacular writing system, or if not present,

any other vernacular alternative.

BestAnalysisVernacularAlternative The best analysis writing system, or if not present, the
best vernacular writing system

BestVernacularAnalysisAlternative The best vernacular writing system, or if not present,
the best analysis writing system

This is an example using one of these methods to return a string for the lexeme form.
If = entry.LexemeFormOA.Form.BestVernacularAlternative

CitationForm on LexEntry is also MultiUnicode. This sets the CitationForm to ‘manger’.
entry.CitationForm.set_String(wsv, 'manger’)

To clear an alternative, set it to None.
entry.CitationForm.set_String(wsv, None)

If you want to get all writing systems in a MultiUnicode, you can use the following method. The
first line returns an array with all of the writing system codes in the property that have data,
whether they are hidden or not. The second line gives the number returned. The following two
lines loop through the returned codes listing the code and string content.

wss = entry.CitationForm.AvailableWritingSystemlds
len(wss)
2
for ws in wss:

print(ws, entry.CitationForm.get_String(ws).Text)
999000003 word
999000004 wordFr

4.1.5 MultiString

The Comment property on LexEntry is an example of a MultiString property. Assuming ‘entry’
IS an entry object and ‘wsa’ is the analysis writing system, this command retrieves an ITsString
from the specified alternative of the property:

note = entry.Comment.get_String(wsa)

This will set the Comment to ‘comment’ in the wsa alternative.
entry.Comment.set_String(wsa, ‘comment’)

To clear an alternative, set it to None.
entry.Comment.set_String(wsa, None)

If you want to get all writing systems in a MultiStringdir, you can use the following method. The
first line returns an array with all of the writing system codes in the property that have data,
whether they are hidden or not. The second line gives the number returned. The following two
lines loop through the returned codes listing the code and string content.

wss = entry.Comment.AvailableWritingSystemlIds
len(wss)
3

8/16/2024

FLEx Conceptual Model Page 11

for ws in wss:
print(ws, entry.Comment.get_String(ws).Text)
999000001 German note
999000002 English note
999000003 French note

4.1.6 TsString

This section gives an introduction for working with TsStrings. There are additional methods that
are not discussed here.

4.1.6.1 TsString class

TsString is the class used for a FieldWorks String that allows embedding. To work with these
strings, you will need to import appropriate classes and methods if you don’t use the default
imports listed in section 2.

from SIL.LCModel.Core.Kernelinterfaces import ITsString, ITsTextProps, ITsStrFactory,
ITsPropsFactory, ITsStrBldr, ITsIncStrBIdr, ITsPropsBIdr, ITsMultiString, FwTextPropType,
FwTextPropVar

from SIL.LCModel.Core.Text import TsStringUtils, TsIncStrBIdr, TsStrBldr

If you just want a simple TsString string in a single writing system, you can use this method
tsString = TsStringUtils.MakeString('Simple string.', wsa)

If you need to get a simple Unicode string from a TsString ignoring writing systems, styles, etc.,
you can use the Text method.

str = tsString.Text

The Length method gives the number of characters in the TsString.
chars = tsString.Length

The number of runs can be returned with RunCount.
runs = tsString.RunCount

The GetSubstring method on TsString will return a TsString using a begin and end offset into the
source string. Using the above tsString, this command would set sub to a TsString containing
‘string’.

sub = tsString.GetSubstring(7, 13)

4.1.6.2 Incremental string builder

Here is an example using an incremental string builder to make a more complex string, “A small
round object. mots francais. The rest of the string.” where the italic portion is in the vernacular
writing system and uses the Emphasized Text style. In FLEx fwdata, this will result in

<Bibliography>

<AStr ws="en">

<Run ws="en">A small round object. </Run>

<Run namedStyle="Emphasized Text" ws="fr">mots franc¢ais.</Run>
<Run ws="en"> The rest of the string.</Run>

</AStr>

</Bibliography>

8/16/2024

FLEx Conceptual Model Page 12

Use TsStringUtils to get a TsIncStrBIdr. Then use these steps to build the string.

1. Use the SetIntPropValues method on the builder to set a ktptWs type with a value of the wsa
(en) writing system.

2. Append the portion of the string that is in English.

3. Use the SetIntPropValues method to set a ktptWs type with a value of the wsv (fr) writing
system

4. Use the SetStrPropValue method to set type ktptNamedStyle and value “Emphasized Text”,

which is the name of a style that will display italic.

Append the French string that will be in the French writing system and italic style.

Use SetIntPropValues to set the writing system back to analysis.

SetStrPropValue to set the style to None to cancel the Emphasized Text style

Append the rest of the English string.

Use GetString to get the TsString from the builder and store it in the Bibliography property

of entry.

tisb = TsStringUtils.MakelncStrBIdr()

tisb.SetIntPropValues(FwTextPropType.ktptWs.value__, FwTextPropVar.ktpvDefault.value__, wsa)
tisb.Append("A small round object. ")

tisb.SetIntPropValues(FwTextPropType.ktptWs.value__, FwTextPropVar.ktpvDefault.value__, wsv)
tisb.SetStrPropValue(FwTextPropType.ktptNamedStyle.value__, "Emphasized Text")
tisb.Append("mots francais.")

tisb.SetIntPropValues(FwTextPropType.ktptWs.value__, FwTextPropVar.ktpvDefault.value__, wsa)
tisb.SetStrPropValue(FwTextPropType.ktptNamedStyle.value__, None)

tisb.Append(" The rest of the string.")

tisbout = tish.GetString()

entry.Bibliography.set_String(wsa, tisbout)

©oo~No O

The FwTextPropType enums are defined in
https://github.com/sillsdev/liblcm/blob/master/src/SIL.LCModel.Core/KernelInterfaces/TextServ
.idh. The two types described above are typical ones needed in FLEX data.

TsIncStrBIdr also provides an AppendTsString() method that appends an existing TsString to the
current string. The following method would add a second copy of the string to tisb.

tisb.AppendTsString(tisbout)

4.1.6.3 String builder

There is also a TsStrBldr that allows you to modify an existing TsString. You can get a
TsStrBIdr for an existing TsString using GetBldr(). Any changes you make will not affect the
input string, but will be available as a new TsString using the GetString() method.

tsb = tisbout.GetBIdr()

TsStrBldr has a Clear() method that will remove anything from the builder. Methods on
TsStrBldr are defined in TextServ.idh in liblcm\src\SIL.LCModel.Core\Kernellnterfaces. There
are methods for mapping between character indexes and run indexes, methods to fetch
characters, methods to get properties, and methods to modify the current state. An example is
ReplaceTsString method taking 3 parameters, ichMin, ichLim, and a TsString. It will replace the
characters from index ichMin up to, but not including the character at index ichLim with the
contents of the TsString. Here’s an example that replaces French ‘mots’ (words) with French
‘plusieurs mots’ (many words) from the tisbout string from above to tsbout:

8/16/2024

https://github.com/sillsdev/liblcm/blob/master/src/SIL.LCModel.Core/KernelInterfaces/TextServ.idh
https://github.com/sillsdev/liblcm/blob/master/src/SIL.LCModel.Core/KernelInterfaces/TextServ.idh

FLEx Conceptual Model Page 13

newfr = TsStringUtils.MakeString('plusieurs mots', wsv)
tsb.ReplaceTsString(22, 26, newfr)
tsbout = tsb.GetString()

If the third parameter is None, it deletes the characters between this range.

4.1.6.4 Comparing TsStrings

The Equals method will return whether two TsStrings are equal or not. The following method
sets eq to False since these two strings are not equal.

eq = tsbout.Equals(tisbout)

Normal Python compare methods may not give the correct results because they are ignoring the
collation on the FLEX writing system. In order to compare two TsStrings, we need to use the
Compare method on a TsStringComparer. The Compare method takes two TsString parameters.
If the first string is less than the second string, it returns -1. If the strings are equal, it returns 0. If
the first string is greater than the second string, it returns 1.

There are two ways to get a TsStringComparer. The first approach uses a .NET comparer that
does not pay attention to language.

netCmpr = TsStringComparer()
netCmpr.Compare(tsstringl, tsstring2)

To pay attention to language, TsStringComparer needs to have a CoreWritingSystemDefinition
argument. To get a CoreWritingSystemDefinition for a standard language, you can use a
language id as in this example

en = CoreWritingSystemDefinition(‘en’)

encmp = TsStringComparer(en)

encmp.Compare(tsstringl, tsstring2)

In order to compare using a custom collation from a FLEX writing system in the project, you
need to use this approach to get a CoreWritingSystemDefinition.
daws = sl.WritingSystems.DefaultAnalysisWritingSystem

dawscmp = TsStringComparer(daws)
dawscmp.Compare(tsstringl, tsstring2)

DefaultVernacularWritingSystem will also work. sl.WritingSystems.AllWritingSystems will
return a list of CoreWritingSystemDefinition for all writing systems in the project.

4.1.6.5 Finding substrings in TsStrings

TsStringUtils.FindTextInString provides a way to find the first substring in a target string.
FindTextInString has 6 parameters. The first is the TsString to search for. The second is the
TsString source string to search. The third is a WritingSystemFactory. The fourth is a Boolean
MatchWholeWord. If True, it will only find the search string if it is a complete word. If False, it
will find the search string anywhere. The fifth and sixth parameters are an output integer for
returning the begin and end index of the location in the source string. However, with Python, it
doesn’t use this, so use 0 for both of these.

The method returns an array with 3 values. The first is True if the search text was found in the
source. In this case, the second is the index where the search text started, and the third is the

8/16/2024

FLEx Conceptual Model Page 14

index of the first letter following the search text. The first is False if a match was not found, and
the second digits are not significant. Case is significant, but writing system is not significant.

This example from the Python console shows the results with different sources and settings. It
demonstrates that case is significant, writing system is not significant, when MatchWholeWord
is true, it only matches complete words, when false, it matches any location in the source.

>>> round = TsStringUtils.MakeString(‘round’, wsa)

>>> wsf = cache.WritingSystemFactory

>>> source = TsStringUtils.MakeString(‘round rounding around boy', wsv)
>>> TsStringUtils.FindTextInString(round, source, wsf, True, 0, 0)
(True, 0, 5)

>>> source = TsStringUtils.MakeString(‘round rounding around boy', wsa)
>>> TsStringUtils.FindTextInString(round, source, wsf, True, 0, 0)
(True, 0, 5)

>>> source = TsStringUtils.MakeString(‘round rounding around boy', wsa)
>>> TsStringUtils.FindTextIinString(round, source, wsf, False, 0, 0)
(True, 0, 5)

>>> source = TsStringUtils.MakeString('Round round boy', wsa)
>>> TsStringUtils.FindTextIinString(round, source, wsf, True, 0, 0)
(True, 6, 11)

>>> source = TsStringUtils.MakeString('Round round boy', wsa)
>>> TsStringUtils.FindTextInString(round, source, wsf, False, 0, 0)
(True, 6, 11)

>>> source = TsStringUtils.MakeString(‘around boy', wsa)

>>> TsStringUtils.FindTextInString(round, source, wsf, True, 0, 0)
(False, 0, 0)

>>> source = TsStringUtils.MakeString(‘around boy', wsa)

>>> TsStringUtils.FindTextIinString(round, source, wsf, False, 0, 0)
(True, 1, 6)

>>> source = TsStringUtils.MakeString('rounding boy', wsa)

>>> TsStringUtils.FindTextIinString(round, source, wsf, True, 0, 0)
(False, 0, 0)

>>> source = TsStringUtils.MakeString(‘rounding boy', wsa)

>>> TsStringUtils.FindTextInString(round, source, wsf, False, 0, 0)
(True, 0, 5)

>>> source = TsStringUtils.MakeString('carerounding boy', wsa)
>>> TsStringUtils.FindTextInString(round, source, wsf, True, 0, 0)
(False, 0, 0)

>>> source = TsStringUtils.MakeString('carerounding boy', wsa)
>>> TsStringUtils.FindTextIinString(round, source, wsf, False, 0, 0)
(True, 4, 9)

4.2 Other basic properties

4.2.1 Booleans

The DoNotUseForParsing property on LexEntry is an example of a Boolean property. Assuming
‘entry’ is an entry object, this command retrieves the Boolean result:

bool = entry.DoNotUseForParsing
This sets the Boolean:

entry.DoNotUseForParsing = True

8/16/2024

FLEx Conceptual Model Page 15

4.2.2 Integers

The HomographNumber property on LexEntry is an example of an integer property. Assuming
‘entry’ is an entry object, this command retrieves the homograph number:

hom = entry.HomographNumber
This sets the homograph number:

entry.HomographNumber = 2

4.2.3 Time

The DateCreated property on LexEntry is an example of a time property. Assuming ‘entry’ is an
entry object, this command retrieves the create time:

dt = entry.DateCreated

The time returned here is a .NET DateTime object. Its methods are available when you execute
the Python ‘from System import *’ command included in section 2.

This sets the create date: the first to the current time and the second to any specified time:
entry.DateCreated = DateTime.Now
entry.DateModified = DateTime.Parse("11/7/2006 12:45:58 PM")

4.2.4 GUIDs

The Guid property on LexEntry is an example of a GUID property. Assuming ‘entry’ is an entry
object, this command retrieves the GUID:

guid = entry.Guid

The GUID returned here is a .NET GUID object. Its methods are available when you execute the
Python ‘from System import ** command included in section 2.

This sets the GUID: the first to a new GUID and the second to any specified instance:
entry.Guid = Guid.NewGuid()
entry.Guid = Guid("edef982a-f69a-4793-95fb-f4398e4a2ddf")

4.2.5 GenDates

The DateOfEvent property on RnGenericRec is an example of a GenDate. Assuming rnRec is a
generic record object, this command retrieves the GenDate:

genDate = rnRec.DateOfEvent

This sets genDate to “About June 4, 2024” and then sets the DateOfEvent to that value.
genDate = GenDate(202406042)
rnRec.DateOfEvent = genDate

4.2.6 Binary

Sid on UserConfigAcct is an example of a Binary property, although it is not used in current
versions of FLEX. Assuming uca is a UserConfigAcct object, this command retrieves the Sid
Binary data

bytes = uca.Sid

8/16/2024

FLEx Conceptual Model Page 16

This returns a System.Byte[] array, however, this needs further research as | was unable to get
valid results when testing.

5 Using Factories

Objects in FLEXx are created using Factory classes from the ServiceLocator in the LCM Cache.
FlexTools typically uses project.project.ServiceLocator to get access to the service locator. In
this document, | use sl defined in section 2.

The ServiceLocator has a Getlnstance method that will return a factory for each FieldWorks
class. Most factories have a Create method without any arguments that can be used to create an
instance of the class. This code will create a new LexEntry object

entry = sl.GetService(ILexEntryFactory).Create()

Most FieldWorks objects are in an ownership hierarchy. After creating an object, it needs to be
added to the desired field on the owner. LexEntry is one of the few classes that do not have
owners. Senses are owned by entries, so if we want to add a sense to the entry, we first create the
LexSense object using this code

sense = sl.GetService(ILexSenseFactory).Create()

Before filling in properties on a newly created object, it is best to immediately attach the new
object to its owner. If you don’t do this, some properties cannot be set since they depend on
information from their owner. Setting the PartOfSpeech on MoStemMsa is an example of this.
This is the code that adds the sense to the Senses owning sequence property of LexEntry.

entry.SensesOS.Add(sense)

The full list of classes that do not have owners is: LangProject, LexEntry, PunctuationForm,
ScrRefSystem, Text, VirtualOrdering, and WfiWordform. CmPicture and CmPossibilityList may
or may not have owners.

There are several class factories that do not have a Create() method without any arguments. In
the model spreadsheet
(https://downloads.languagetechnology.org/fieldworks/Documentation/MasterFieldWorksModel
%20classes%20and%20fields%207000072.x1sx), these classes have ‘false’ in the GenCreate
column. This includes these classes:

CmTranslation
Scripture
ScrBook
ScrRefSystem
ScrDraft
ScrTxtPara

For these classes you need to check parameters in overrides in both the factory and the class
overrides code in the LCM library. An example of this is the CmTranslation object that is owned
in Translations properties on LexExampleSentence and StTxtPara. The Create method for
CmTranslation needs to include the owning object as well as the item from the Translations Type
list when it is created. In this process the Create method will both add the CmTranslation to the
owner and set the Type property on the CmTranslation.

8/16/2024

https://downloads.languagetechnology.org/fieldworks/Documentation/MasterFieldWorksModel%20classes%20and%20fields%207000072.xlsx
https://downloads.languagetechnology.org/fieldworks/Documentation/MasterFieldWorksModel%20classes%20and%20fields%207000072.xlsx

FLEx Conceptual Model Page 17

6 Using Repositories

FLEX has a repository for each class of object that has a list of all of the instances of that class in
the project. The repositories can be accessed from the ServiceLocator in the LCM Cache.
FlexTools typically uses project.project.ServiceLocator to get access to the service locator. In
this document, I use sl defined in section 2.

The ServiceLocator has a GetService method that will return a repository for each FieldWorks
class. If you want to get a single object with a known guid or hvo, you can use the class
repository to get the object. This example uses the ILexEntry repository to get an entry based on
the guid or the hvo.

lexRepo = sl.GetService(ILexEntryRepository)
entry = lexRepo.GetObject(Guid("7b184e6¢-3f51-4c9e-8a2¢-501d7bb973d8™))
entry = lexRepo.GetObject(5142)

You can get the number of objects in the repository by using the Count method
num = lexRepo.Count
This is one way to get the first item from the repository using a for loop:

for e in lexRepo.Allinstances():
entry = e
break

If you want to print the first 5 entries, you could use this code:
i=0
for e in lexRepo.Allinstances():
i+=1
print(e)
ifi >=5:
break
Here is one line to get one object from any repository starting with the ServiceLocator. This
returns a LexEntry, but by changing the class name for the repository, you could get one for any
class.

entry = next(iter(sl.GetService(ILexEntryRepository).Allinstances()))

If you want to get several instances you could use this:

it = iter(sl.GetService(ILexEntryRepository).Allinstances())

el = next(it)

e2 = next(it)

e3 = next(it)
Here is one way to get a possibility item (MorphType) with a given name using a repository.
This assumes the list does not have duplicate names. If the item is not found, ‘stem’ will remain
‘None’.

morphTypeRepo = sl.GetService(IMorphTypeRepository)

stem = None

for m in morphTypeRepo.Allinstances():

if m.Name.get_String(wsa).Text == "stem":

stem =m
break

8/16/2024

FLEx Conceptual Model Page 18

There is a simpler way to do this using the FindPossibilityByName method on
CmPossibilityList.

plist = lexicon.MorphTypesOA
stem = plist.FindPossibilityByName(plist.PossibilitiesOS, 'stem’, wsa)

7 Using Atomic owning and reference properties

To add an object to an atomic owning property we use this syntax. In this case, LexemeForm on
LexEntry is an atomic owning property. This code creates a MoStemAllomorph object and adds
it to the LexemeForm of the entry.

stemAllo = sl.GetService(IMoStemAllomorphFactory).Create()
entry.LexemeFormOA = stemAllo

To access an object from an atomic property, you use this syntax. This would get the MoForm
object owned in the atomic LexemeForm property of LexEntry.

allo = entry.LexemeFormOA

In the Python console you can see how this works. It initially sets allo to an IMoForm as
demonstrated with the _ class__ method. You can get the exact class by using the ClassName
method. Once you know the class name, you can cast the object to an instance of that class. At
that point all of the methods on MoStemAllomorph would be available.

allo = entry.LexemeFormOA

>>> allo.__class___

<class 'SIL.LCModel.IMoForm'

>>> agllo.ClassName

‘MoStemAllomorph’

>>> allo = IMoStemAllomorph(allo)

>>> allo.__class__
<class 'SIL.LCModel.IMoStemAllomorph'>

If you just want to get the LexemeForm string, you can use this code
lexform = entry.LexemeFormOA.Form.get_String(wsv).Text

Atomic reference properties are accessed in the same way, but the property would have RA in
the property name.

The following would get the object from the MorphoSyntaxAnalysis atomic reference property
of LexSense.

stemMsa = sense.MorphoSyntaxAnalysisRA

The following would set the MorphoSyntaxAnalysis atomic reference property on LexSense to
the stemMsa object.

sense.MorphoSyntaxAnalysisRA = stemMsa

The following line would remove the MoStemAllomorph from the LexemeForm atomic owning
property. This would delete the MoStemAllomorph from the project.

entry.LexemeFormOA = None

8/16/2024

FLEx Conceptual Model Page 19

8 Using Sequence owning and reference properties

The Add method will add an object to a sequence owning property. The following example
creates a LexSense object and adds it to the Senses owning sequence property of the entry.

sense = sl.GetService(ILexSenseFactory).Create()
entry.SensesOS.Add(sense)

For sequence properties, the Insert method will let you add an object at a specific location in a
sequence. It has two parameters: the first is an integer offset into the sequence (0 inserts before
the first item, etc.) The second parameter is the object you are inserting.

In this example the entry already has 2 senses. This creates a new sense and inserts it between
the original senses and gives it a gloss of “new 2nd sense”.

sense = sl.GetService(ILexSenseFactory).Create()
entry.SensesOS.Insert(1, sense)
sense.Gloss.set_String(wsa, 'new 2nd sense’)

The MoveTo method allows you to move one or more items in a sequence to a new location. The
first parameter is the index of the first item in the list to move. The second parameter is the index
of the last item in the list to move. The third parameter is the target sequence. The fourth
parameter is the starting index in the target list to which you want to move the item(s).

For an entry with 3 senses, this code would switch the order of the second and third senses (e.g.,
original 1, 2, 3, and result 1, 3, 2).

entry.SensesOS.MoveTo(1,1,entry.SensesOS,3)
In sequence properties, there are methods that allow you to remove items from the sequences.

The Remove method will remove a specific object from the sequence. It has one parameter
which is the object you want to remove from the sequence.

Given an entry with 2 senses, this code will remove the first sense. It returns True because it
succeeded in removing the sense.

sense = entry.SensesOSJ[0]

success = entry.SensesOS.Remove(sense)
print(success)

True

The RemoveAt method will remove one item from the sequence. It has one parameter which is
an integer offset into the sequence (0 would remove the first item).

Given an entry with 3 senses, this line will remove the middle entry.
entry.SensesOS.RemoveAt(1)

You can remove everything from a sequence account using the Clear method.
entry.SensesOS.Clear()

When items are removed from an owning sequence, they are deleted from the project.

One way to get a single entry would be to use the Entries method on LexDb. This is virtual since
dictionary entries do not have owners, so it doesn’t work the same as an actual sequence owning

property.

8/16/2024

FLEx Conceptual Model Page 20

for e in lexicon.Entries:
entry =e
break

You can get one entry without the for loop using this command.
entry = next(iter(lexicon.Entries))
To get one entry at a time, you could use this:

iter = iter(lexicon.Entries)

el = next(iter)

e2 = next(iter)
Possibility lists have a Possibilities owning sequence property. The following code will get the
Parts Of Speech possibility list from LangProject and gets the number of PartOfSpeech objects at
the top level. Then, since this is an owning sequence, we can use an index to access the first
PartOfSpeech object.

poslist = Ip.PartsOfSpeechOA

num = poslist.PossibilitiesOS.Count
pos = poslist.PossibilitiesOS[0]

This code is one way to print the names of the items

for p in poslist.PossibilitiesOS:
print(p)
PossibilityList has a method that will return all of the possibilities including nested ones. This
code will print all of these:
for p in poslist.ReallyReallyAllPossibilities:
print(p)

PossibilityList has a FindPossibilityByName method that will return an item from the list in a
specified writing system with a specified name or abbreviation where. case is significant. If an
item is not found, the result will be None. In addition to flat lists, this will recurse to subitems as
well.

This example sets stem to the ‘stem’ IMorphType item from the Morph Types list using the
default analysis writing system.

plist = lexicon.MorphTypesOA
stem = plist.FindPossibilityByName(plist.PossibilitiesOS, 'stem’, wsa)

For a sequence property, you can use an index to access an object in the sequence. This example
returns the second sense in entry.

sense = entry.SensesOS[1]

9 Using Collection owning and reference properties

The Add method will add an object to a collection owning property. The following example
creates a MoStemMsa object and adds it to the MorphoSyntaxAnalyses owning collection
property of the entry.

msa = sl.GetService(IMoStemMsaFactory).Create()
entry.MorphoSyntaxAnalysesOC.Add(msa)

8/16/2024

FLEx Conceptual Model Page 21

There are no Insert methods for collections since these properties have no inherent order.

The following code will get the number of styles in an owning collection
num = Ip.StylesOC.Count

The StylesOC property on LangProject is a collection property, so it doesn’t accept an index to
get a specific item. However, it provides a ToArray method that can be indexed. So this code
will pick up the “first’ style, but keep in mind there really isn’t a first style since they are in a
collection, although in fwdata, there is an order that the objsur elements are stored, so this
method will use that order.

style = Ip.StylesOC.ToArray()[0]

Collections can still be processed with a “for’ loop. The following code will print all of the
styles.

for s in Ip.StylesOC:
print(s)

This method would just print the first style:

for s in Ip.StylesOC:

print(s)
break

You can remove everything from a collection property using the Clear method.
entry.MorphoSyntaxAnalysesOC.Clear()

You can remove a single object from a collection property using the Remove method. It has a
single argument, which is the object you are wanting to remove. This method returns True if it
found and removed the object, or False, otherwise. The following removes the msa
MoMorphoSyntaxAnalysis object from the MorphoSyntaxAnalyses reference property of
LexEntry.

entry.MorphoSyntaxAnalysesOC.Remove(msa)
True

When removing an object from a reference property, the object is not deleted from the project
since this is only a reference, and not an owning property.

Adding to reference properties is similar to owning properties. When adding, you need to add the
actual object to the property, not just a guid or hvo. For example, the following code shows two
ways to add a semantic domain (1.6 — Animal) to a sense. The first sample uses the
FindPossibilityByName method to find the semantic domain with abbreviation 1.6 (‘Animal’
would also work) and then it adds the item to the SemanticDomains reference collection of
LexSense. The second sample gets a SemanticDomain object using the GetService on the
ServiceLocator and then using the GetObject method to get an item using the guid for the item,
then it can add that to the sense. For most factory lists, the guids are identical across projects.
Both of these samples would produce the same result.

plist = Ip.SemanticDomainListOA
sense.SemanticDomainsRC.Add(plist.FindPossibilityByName(plist.PossibilitiesOS, '1.6', wsa))

semdomRepo = sl.GetService(ICmSemanticDomainRepository)

8/16/2024

FLEx Conceptual Model Page 22

semdom = semdomRepo.GetObject(Guid("944cf5af-469e-4b03-878f-a05d34b0d9f6"))
sense.SemanticDomainsRC.Add(semdom)

10 Using custom fields

10.1Getting information on custom fields

Reading data from custom fields and writing data to custom fields requires some additional
methods. Each of these methods use the Hvo of the class instance being accessed as well as a
custom field ID (flid) that identifies the custom field on the class. The type of field content
determines the method used to access the data.

Getting a list of the custom fields in a project is helpful when accessing this data. In order to get
a list, it requires iterating through a list of all fields (over 1,060) in the project. As a result, in
your code, it would be good to get a list one time and cache it for repeated use in the program.

The following method will return a list of 7-item tuples with useful information for accessing
custom fields.

def GetAllCustomFields():
for flid in mdem.GetFieldlds():
if mdem.IsCustom(flid):
yield(flid, mdcm.GetOwnClsld(flid), mdcm.GetOwnClsName(flid), mdcm.GetFieldType(flid),
mdcm.GetFieldName(flid), mdcm.GetFieldWs(flid), mdcm.GetFieldListRoot(flid))

This uses the IFwMetaDataCacheManaged interface in the LCM cache.
mdcm = IFwMetaDataCacheManaged(cache.MetaDataCacheAccessor)

It uses a GetFieldlds method that returns an array of integer field Ids (flids) for built-in and
custom fields. All flids for custom fields use the class ID followed by a 3-digit custom field id
which starts at 500 for each class. Each FLEX project may have different flids for custom fields
depending on what custom fields are included in a project, and the order in which they were
added. Thus, any code that works with custom fields needs to get appropriate flids for each field
they need to access in a given project. The above method will provide this list.

To see the results of the list, you can use the following code:

customFields = GetAllCustomFields()
for field in customFields :
print(field[0],field[1],field[2],field[3],field[4],field[5],field[6], sep=", ")

The output for this code in my test project that demonstrates all possible types of custom fields is
as follows:

5002500, 5002, LexEntry, 8, Custom Date, -1, 00000000-0000-0000-0000-000000000000

5002501, 5002, LexEntry, 2, Custom Integer, -1, 00000000-0000-0000-0000-000000000000

5002502, 5002, LexEntry, 16, Custom MultiUnicode, -3, 00000000-0000-0000-0000-000000000000
5002503, 5002, LexEntry, 23, Custom Paragraph, -1, 00000000-0000-0000-0000-000000000000
5002504, 5002, LexEntry, 24, Custom Ref Atomic, -1, bOaleb98-ea5e-11de-888e-0013722f8dec
5002505, 5002, LexEntry, 26, Custom Ref Coll, -1, bOaleb98-ea5e-11de-888e-0013722f8dec

5002506, 5002, LexEntry, 13, Custom String, -1, 00000000-0000-0000-0000-000000000000

5016500, 5016, LexSense, 13, Custom Sense Single Vern, -2, 00000000-0000-0000-0000-000000000000
5016501, 5016, LexSense, 13, Custom Sense String, -1, 00000000-0000-0000-0000-000000000000
4004500, 4004, RnGenericRec, 16, Custom Record VernAnal, -6, 00000000-0000-0000-0000-000000000000
6500, 6, Segment, 13, Custom Segment String, -1, 00000000-0000-0000-0000-000000000000

8/16/2024

FLEx Conceptual Model Page 23

The elements of each tuple are as follows:

Field Id (flid) for the custom field
Class Id (clid) of class that owns the field
Class name that owns the field
Type of field content for the custom field
The user-defined name of the custom field. This is the original name for the field, which is
the name used to access data from the fwdata file. If you want to get modified names
currently showing in the Ul, you need to use the GetFieldLabel method on mdcm.
6. The writing system selector. Possibilities are:

e -1—The first analysis writing system.

e -2—The first vernacular writing system.

o -3—All checked analysis writing systems.

o -4—All checked vernacular writing systems.

o -5—All checked analysis then all checked vernacular writing systems.

o -6—All checked vernacular then all checked analysis writing systems.

Note: Segment only offers Single-line Text with first analysis or vernacular.

7. The guid of the CmPossibilityList being referenced by this custom field.

ko E

The first tuple represents this field in the fwdata file:

<CustomField class="LexEntry" label="New Custom Date" name="Custom Date" type="GenDate"
wsSelector="-1" />

In this case, the name is “Custom Date” although the user modified the name after it was first
created, so in the FLEx UI it shows “New Custom Date”.

LCMBrowser gives various error messages when the project has custom fields, and the result is
not fully accurate. For my test project this is what it shows for LexEntry.

LexEntry 5002500 Custem Date Custom GenDate
LexEntry 500250 Custom Integer Custom Integer
LexEntry 5002502 Custermn MultiUnicode Custom Integer
LexEntry 5002503 Custom Paragraph Custom Integer
LexEntry 5002504 Custom Ref Atomic Custom Integer
LexEntry 5002505 Custom Ref Coll Customn - RC CrmPossibility
LexEntry 5002506 Custom String Custom String

FLEXx only provides limited options for storing data in custom fields. The available field types
are:

e 2 Integer—Number. The field holds an integer value

8 GenDate—Date. The field holds a generic date stored as an integer.

e 13 String—Single-line Text (first analysis or vernacular). This field stores a String allowing
embedding (It actually stores MultiString, but the Ul limits it to one writing system.)

e 16 MultiUnicode—Single-line Text (all analysis and/or vernacular). This field stores a
MultiUnicode with no embedding.

e 23 OA—Multiparagraph Text. This field stores an owning atomic StText allowing multiple
paragraphs. It works well for Data Notebook, but should probably not be used in the lexicon
(use Shift+Enter instead).

8/16/2024

FLEx Conceptual Model Page 24

e 24 RA—List Reference (single item). This field holds an atomic reference to a single list
item from the selected possibility list.

e 26 RC—List Reference (multiple items). This field holds a reference collection to multiple
list items from the selected possibility list.

If you want to get custom fields for a single class, there is another method that provides this. It
probably is not more efficient than the above method for all fields since it still needs to go
through all fields in the project.

def GetCustomFieldsForClass():
for flid in mdem.GetFields(LexEntryTags.kClassld, False, int(CellarPropertyTypeFilter.All)):
if mdem.IsCustom(flid): # comment this out to get all fields
yield(flid, mdem.GetOwnClsld(flid), mdem.GetOwnClsName(flid), mdecm.GetFieldType(flid),
mdcm.GetFieldName(flid), mdcm.GetFieldWs(flid), mdecm.GetFieldListRoot(flid))

To see the results of the list, you can use the following code:

entryCustFields = GetCustomFieldsForClass()
for field in entryCustFields:
print(field[0],field[1],field[2],field[3],field[4],field[5],field[6], sep=", ")

The output for this code in my test project is the following:

5002500, 5002, LexEntry, 8, Custom Date, -1, 00000000-0000-0000-0000-000000000000
5002501, 5002, LexEntry, 2, Custom Integer, -1, 00000000-0000-0000-0000-000000000000
5002502, 5002, LexEntry, 16, Custom MultiUnicode, -3, 00000000-0000-0000-0000-000000000000
5002503, 5002, LexEntry, 23, Custom Paragraph, -1, 00000000-0000-0000-0000-000000000000
5002504, 5002, LexEntry, 24, Custom Ref Atomic, -1, bOaleb98-ea5e-11de-888e-0013722f8dec
5002505, 5002, LexEntry, 26, Custom Ref Coll, -1, bOaleb98-ea5e-11de-888e-0013722f8dec
5002506, 5002, LexEntry, 13, Custom String, -1, 00000000-0000-0000-0000-000000000000

Each of these fields except Custom MultiUnicode are for a first analysis writing system. Custom
MultiUnicode is for all analysis writing systems.

In the following sections we use the DomainDataByFlid method in the LCM cache using this
ddbf = cache.DomainDataByFlid

In the samples below, entry is the id of the entry with the custom fields and the flids are the ones
displayed above.

10.2 2 - Integer

The DomainDataByFlid methods for accessing custom Integer fields are:

public virtual int get_IntProp(int hvo, int tag)
public virtual void Setint(int hvo, int tag, int n)

In the arguments, hvo is the Hvo of the object with the custom field. tag is the field 1d (flid) of
the custom field.

To read data from a custom Integer field, use the following code.
num = ddbf.get_IntProp(entry.Hvo, 5002501)

To set data in a custom Integer field, use the following code where the 3 argument is the integer
to store in the property.

ddbf.SetInt(entry.Hvo, 5002501, 30)

8/16/2024

FLEx Conceptual Model Page 25

10.3 8 — GenDate

Although DomainDataByFlid has get_ GenDateProp and SetGenDate prop, they are not fully
implemented, so they do not work. Instead we can read and set the GenDate using the integer
methods.

To read data from a custom GenDate field, use the following code which casts the returned
integer into a GenDate class.

gendate = GenDate(ddbf.get_IntProp(entry.Hvo, 5002500))

To set data in a custom GenDate field, use one of the following samples where the 3" argument
is the integer representing the GenDate to store in the property.

ddbf.Setlnt(entry.Hvo, 5002500, 202406280)
ddbf.Setint(entry.Hvo, 5002500, gendate.Tolnt())

10.4 13 - String

The DomainDataByFlid methods for accessing custom String fields are:

public virtual ITsString get_StringProp(int hvo, int tag)
public virtual void SetString(int hvo, int tag, ITsString _tss)

In the arguments, hvo is the Hvo of the object with the custom field. tag is the field Id (flid) of
the custom field, and _tss is the ITsString to set into the property.

To read data from a custom String field, use the following code. The method will return an
ITsString

tss = ddbf.get_StringProp(entry.Hvo, 5002506)

To set data in a custom String field, use the following code where the 3™ argument is the
ITsString to store in the property.

ddbf.SetString(entry.Hvo, 5002506, TsStringUtils.MakeString('New String', wsa))

10.5 16 — MultiUnicode

The DomainDataByFlid methods for accessing custom MultiUnicode fields are:

public override ITsString get_MultiStringAlt(int hvo, int tag, int ws)
public override ITsMultiString get_MultiStringProp(int hvo, int tag)
public override void SetMultiStringAlt(int hvo, int tag, int ws, ITsString _tss)

The first method returns a single 1TsString from the specified alternative. The second method
returns an ITsMultiString object that contains all of the strings for different alternatives. The
third method stores an ITsString in the specified alternative. In the arguments, hvo is the Hvo of
the object with the custom field, tag is the field Id (flid) of the custom field, ws is the writing
system alternative to use, and _tss is the ITsString to store into the alternative on the property.
Although this uses MultiString methods, the data in the field will actually be Unicode.

To read data from a custom MultiUnicode field, use the following code. The method will return
an ITsString that can be converted to a Unicode string by appending the .Text method.

tss = ddbf.get_MultiStringAlt(entry.Hvo, 5002502, wsa)

8/16/2024

FLEx Conceptual Model Page 26

To set data in a custom MultiUnicode field, use the following code where the 3 argument is the
ITsString to store in the property, although the stored result will be a Unicode string.

ddbf.SetMultiStringAlt(entry.Hvo, 5002502, wsa, TsStringUtils.MakeString('New String', wsa))

If you want to get all alternatives for the MultiUnicode property, including unchecked and
hidden writing systems, you can get the TsMultiString object and iterate through the alternatives.
GetStringFromIndex returns a tuple with the ITsString and the writing system code. This code
will process all of the alternatives, listing the content and writing system code for each one.
ms = ddbf.get_MultiStringProp(entry.Hvo, 5002502)
alt=0
while alt < ms.StringCount:
msa = ms.GetStringFromindex(alt)
print(msa[0]. Text, msa[1])
alt+=1

Output where there were three writing systems was

German definition 999000001
English definition 999000002
French definition 999000003

10.6 23 — OA Multiparagraph

The DomainDataByFlid methods for accessing custom Multiparagraph fields are:

public override int get_ObjectProp(int hvo, int tag)
public int MakeNewObiject(int clid, int hvoOwner, int tag, int ord)

A Multiparagraph field is an owning atomic property that owns a StText object, which can own
any number of StTxtPara objects. In the arguments, hvo and hvoOwner are the Hvo of the object
with the custom field, tag is the field Id (flid) of the custom field, clid is the class Id of the object
to create in the custom field (always StText in this case). If ord is 0 or more, it indicates the
location in a sequence to create the new object. If ord is -1, it creates a new object in a collection.
If ord is -2 it creates the new object in an atomic property, replacing whatever was there. Since
this is atomic, ord should always be -2.

To read data from a custom Multiparagraph field, use the following code. Get_ObjectProp
returns the hvo of the object in the property. To get the actual StText object, we use the
IStTextRepository. With the IStText object, you can work through the owning hierarchy to get
the paragraph data.

sttextHvo = ddbf.get_ObjectProp(entry.Hvo, 5002503)
sttext = sl.GetService(IStTextRepository).GetObject(sttextHvo)

To set data in a custom MultiUnicode field, use the following code. This will create a new
StText, setting the property to this value. It returns the Hvo of the newly created StText so you
can add paragraph data. I could not find a way to place an existing StText into the property.

sttextHvo = ddbf.MakeNewObject(StTextTags.kClassld, entry.Hvo, 5002503, -2)

10.7 24 — RA List Reference (single item)
The DomainDataByFlid methods for accessing custom single-item list reference fields are:

8/16/2024

FLEx Conceptual Model Page 27

public override int get_ObjectProp(int hvo, int tag)
public override void SetObjProp(int hvo, int tag, int hvoObj)

In the arguments, hvo is the Hvo of the object with the custom field, tag is the field Id (flid) of
the custom field, and hvoObj is the Hvo of the object to add to the atomic reference property. In
this case, the object should always be a CmPossibility, or subclass, from the CmPossibilityList
that is specified as the target for this custom field.

To read data from a custom single item list reference field, use the following code. The first line
returns the Hvo of the item in the field, and the second line turns this into an ICmPossibility. For
some lists you may want to use the appropriate subclass of CmPossibility used in that list. The
final line just verifies that we got the ‘anatomy’ item from the Academic Domains list with guid
b0aleb98-ea5e-11de-888e-0013722f8dec as shown above for field 5002504.

posflid = ddbf.get_ObjectProp(entry.Hvo, 5002504)
pos = sl.GetService(ICmPossibilityRepository).GetObject(posflid)

print(pos)

anatomy
To set data in a custom single-item list reference field, use the following code. The first two lines
return the ‘education’ ICmPossibility from the Academic Domains list. The third line stores this
into the custom field, replacing whatever was already there.

plist = lexicon.DomainTypesOA

pos = plist.FindPossibilityByName(plist.PossibilitiesOS, 'education’, wsa)
ddbf.SetObjProp(entry.Hvo, 5002504, pos.Hvo)

To delete what’s in the property, set it to 0.
ddbf.SetObjProp(entry.Hvo, 5002504, 0)

10.8 26 — RC List Reference (multiple items)
The DomainDataByFlid methods for accessing custom multiple-item list reference fields are:

public virtual int get_Vecltem(int hvo, int tag, int index)
public virtual int get_VecSize(int hvo, int tag)
public void Replace(int hvoObj, int tag, int ihvoMin, int ihvoLim, int[] _rghvo, int chvo)

The get_Vecltem method returns the Hvo of the CmPossibility in the reference property at the
specified index. Get_VecSize returns the number of items in the reference property. Replace will
replace 0 or more items in the reference property with O or more new items.

In the arguments, hvo and hvoObj is the Hvo of the object with the custom field, tag is the field
Id (flid) of the custom field, index is the location of the item you want to get (starting at 0),
ihvoMin is the index of the first item you want to replace, and ihvoLim is the index of the next
item you want to keep, rghvo is a list of object hvos you want to add to the field, and chvo is the
number of items you want to add from rghvo.

To read data from a custom multiple item list reference field, use the following code. The first
line gets the number of references currently in the field, in case you want to know. The second
line returns the flid of the first item in the field (index 0). The third line turns the flid into an
ICmPossibility. The fourth line just verifies that we got the ‘anatomy’ item from the Academic
Domains list with guid bOaleb98-eabe-11de-888e-0013722f8dec as shown above for field
5002505.

8/16/2024

FLEx Conceptual Model Page 28

cnt = ddbf.get_VecSize(entry.Hvo, 5002505)
posflid = ddbf.get_Vecltem(entry.Hvo, 5002505, 0)
pos = sl.GetService(ICmPossibilityRepository).GetObject(posflid)

print(pos)

anatomy
To set new data in a custom multiple-item list reference field, replacing whatever is there, use the
following code. The first 4 lines get two ICmPossibility items from the Academic Domains list
and puts their Hvos into a list. The next line gets the count of items currently in the property. The
next line replaces all of the items with the 2 new items in the flidList. The final line just verifies
that there are now two items in the property.

plist = lexicon.DomainTypesOA

adl = plist.FindPossibilityByName(plist.PossibilitiesOS, 'anatomy’, wsa)
ad2 = plist.FindPossibilityByName(plist.PossibilitiesOS, 'anthropology’, wsa)
flidlist = [ad1.Hvo, ad2.Hvo]

cnt = ddbf.get_VecSize(entry.Hvo, 5002505)

ddbf.Replace(entry.Hvo, 5002505, 0, cnt, flidlist, len(flidlist))
ddbf.get_VecSize(entry.Hvo, 5002505)

2

To append a new item to the end of the current list, use the following code. The first 2 lines get
another item from the Academic Domains list and puts it into a list of Hvos. The third line gets
the count of what’s currently in the list (2 in this case). The next line uses the count as the begin
and end index of what we want to replace. Since they are the same, and at the end of the list,
nothing actually gets deleted, but then adds the new item at the end. Note that since this property
is a collection, the order is ignored, so it really doesn’t matter whether new items are added to the
beginning or end of the current items.

ad3 = plist.FindPossibilityByName(plist. PossibilitiesOS, 'cultural anthropology’, wsa)
flidlist = [ad3.HvO]

cnt = ddbf.get_VecSize(entry.Hvo, 5002505)

ddbf.Replace(entry.Hvo, 5002505, cnt, cnt, flidlist, len(flidlist))
ddbf.get_VecSize(entry.Hvo, 5002505)

3

To remove all of the items from the list, use the following code. The first line gets the count of
items currently in the property. The next line replaces all of the items with 0 new items. The final
line verifies that the property is now empty.

cnt = ddbf.get_VecSize(entry.Hvo, 5002505)
ddbf.Replace(entry.Hvo, 5002505, 0, cnt, None, 0)
ddbf.get_VecSize(entry.Hvo, 5002505)

0

11 Additional object methods

11.1Merging objects

There is a generic MergeObject method on CmObject which may work on most classes. It works
on LexEntry and LexSense, but not on RnGenericRec.

void MergeObject(ICmObject objSrc, bool fLoseNoStringData);

8/16/2024

FLEx Conceptual Model Page 29

MergeObiject takes two parameters. The first is the source object that will be deleted after the
merge. The second is a Boolean fLoseNoStringData. This merges the source object into this
destination object. If fLoseNoStringData is false: For atomic properties, if this object has
something in the property, the source property is ignored. For sequence properties, the objects in
the source will be moved and appended to the properties in this object. Any references to the
source object will be transferred to this object. The source object is deleted at the end of this
method. String properties are copied from the source if the destination (this) has no value and the
source has a value. if fLoseNoStringData is true, the above is modified as follows: 1. If a string
property has a value in both source and destination, and the values are different, append the
source onto the destination. 2. If an atomic object property has a value in both source and
destination, recursively merge the value in the source with the value in the destination.

Given two ILexEntry objects, this method will merge en2 (source) into enl (destination), and
en2 is deleted. True means it will try not to lose any strings, which may result in appended
strings.

enl.MergeObject(en2, True)

11.2Equal objects

The Equals method can be used between any two objects. It will only return True if the two
objects are the same object (e.g., the Hvo’s match).

enl.Equals(en2)

This would return False, assuming enl and en2 are not the same object. This method would
presumably be useful for iterating through a sequence to find the object in a sequence.

11.3Deleting objects

To delete an object, use the Delete method
entry.Delete()

This deletes the entry, along with everything it owns and removes references to any of the
deleted objects. In most cases this is sufficient. For some things when you delete one object,
some other object(s) should also be deleted since they are no longer needed.

When you use a method to remove an object from an owning property, the removed object will
be deleted from the project.

12 Building a FLEx entry using Python

This example demonstrates how you can add the following French entry to FLEX.

lion » A large carnivorous feline mammal. e fion ext Je roi de Ja jungle. The lion iz
the king of the jungle. (zem. domains: 1.6.1.1.2 - Carnivore, 1.6 - Animal)

This diagram illustrates the classes and properties that will be created in this section.

8/16/2024

FLEx Conceptual Model Page 30

MoStemAllomorph

LexEntry Form: lion
MorphType —---F---- P MoMorphType
LexemeForm ———— stem
MoStemMsa
MorphoSyntaxAnalyses——p PartOfSpeech — | —— - p PantOfSpeech
n
| -
LexSense : CmSemanticDomain
Senses »| Gloss: lion : e
MorphoSyntaxAnalysis ———-——- ' e
Definiton: Alarge camivourous feline mammal. +
SemanticDomains - ——————————————|-—— - !
Examples —
CmPossibility
LexExampleSentence . Free translation
.+ CmTranslation A
Example: Le lion est le roi de 1a jungle. !
Type ————— - ——— !
Transiations | | Translation: The lion is the king of the jungle.

The following Python code is one way to implement the entry represented by these classes.

This assumes that sl has been set to the ServiceLocator in the LCM Cache, Ip for the LangProject
class, and lexicon for the LexDb class as in section 2

When a class is created, it’s best to place it in the owning property of its owner before adding
other properties to the new class. Some of the properties (e.g., the PartOfSpeech for
MoStemMsa) will give an error if you attempt to assign a value to it before it has an owner,
presumably because it needs to check something in the owner as part of the setting process.

#i## Create entry

entry = sl.GetService(ILexEntryFactory).Create()

##H## Create MoStemAllomorph and add to entry LexemeForm

stemAllo = sl.GetService(IMoStemAllomorphFactory).Create()

entry.LexemeFormOA = stemAllo

stemAllo.Form.set_String(wsv, 'lion")

plist = lexicon.MorphTypesOA

stemAllo.MorphTypeRA = plist.FindPossibilityByName(plist.PossibilitiesOS, 'stem’, wsa)
###H Create MoStemMsa and add to entry MorphoSyntaxAnalyses

stemMsa = sl.GetService(IMoStemMsaFactory).Create()
entry.MorphoSyntaxAnalysesOC.Add(stemMsa)

plist = Ip.PartsOfSpeechOA

stemMsa.PartOfSpeechRA = plist.FindPossibilityByName(plist.PossibilitiesOS, 'Noun', wsa)
Create sense and add to entry Senses

sense = sl.GetService(ILexSenseFactory).Create()

entry.SensesOS.Add(sense)

sense.Gloss.set_String(wsa, 'lion’)

sense.Definition.set_String(wsa, 'A large carnivorous feline mammal.”)
sense.MorphoSyntaxAnalysisRA = stemMsa

plist = Ip.SemanticDomainListOA
sense.SemanticDomainsRC.Add(plist.FindPossibilityByName(plist. PossibilitiesOS, '1.6', wsa))
sense.SemanticDomainsRC.Add(plist.FindPossibilityByName(plist.PossibilitiesOS, '1.6.1.1.2", wsa))
Create example sentence and add to sense Examples

8/16/2024

FLEx Conceptual Model Page 31

example = sl.GetService(lLexExampleSentenceFactory).Create()
sense.ExamplesOS.Add(example)

example.Example.set_String(wsv, 'Le lion est le roi de la jungle.”)

Create example translation and add to example Translations

plist = Ip.TranslationTagsOA

freeTrans = plist.FindPossibilityByName(plist.PossibilitiesOS, 'Free translation’, wsa)
translation = sl.GetService(ICmTranslationFactory).Create(example, freeTrans)
translation.Translation.set_String(wsa, "The lion is the king of the jungle.")

This summarizes what happens in each section of this code and shows the resulting data in the
FLEXx fwdata file.

The first step is to create the LexEntry which is the top of the ownership hierarchy for the entry.
We use the ILexEntryFactory to create this LexEntry.

entry = sl.GetService(ILexEntryFactory).Create()

At this point we just have the LexEntry class without the three owned objects that will be added
in the following steps.

<rt class="LexEntry" guid="58ec354f-9013-4aca-b20f-9e3f999e1b96">
<DateCreated val="2024-05-23 14:54:36.285" />

<DateModified val="2024-05-23 14:54:36.285" />
<DoNotUseForParsing val="False" />

<HomographNumber val="0" />

<LexemeForm>

<objsur guid="856fd1a9-644d-4b60-9611-35dcb3d64d18" t="0" />
</LexemeForm>

<MorphoSyntaxAnalyses>

<objsur guid="c710bbdc-11f7-46be-96c2-e81674138eed" t="0" />
</MorphoSyntaxAnalyses>

<Senses>

<objsur guid="933e76a4-6ded-47df-81ca-581f4937c08a" t="0" />
</Senses>

</rt>

The next step is to add a MoStemAllomorph to the entry. We use the
IMoStemAllomorphFactory to create the object, then store it in the LexemeForm owning
property of the LexEntry. Then we can store the lexeme form text in the vernacular alternative of
the Form property of the MoStemAllomorph. To set the MorphType, we use the
FindPossibilityByName method on the Morph Types list to get the ‘stem’ MorphType, and then
store it in the MorphType atomic reference property.

stemAllo = sl.GetService(IMoStemAllomorphFactory).Create()

entry.LexemeFormOA = stemAllo

stemAllo.Form.set_String(wsv, 'lion’)

plist = lexicon.MorphTypesOA

stemAllo.MorphTypeRA = plist.FindPossibilityByName(plist. PossibilitiesOS, 'stem’, wsa)

<rt class="MoStemAllomorph" guid="856fd1a9-644d-4b60-9611-35dcb3d64d18"
ownerguid="58ec354f-9013-4aca-b20f-9e3f999e1b96">

<Form>

<AUni ws="fr">lion</AUni>

</Form>

<IsAbstract val="False" />

<MorphType>

<objsur guid="d7f713e8-e8cf-11d3-9764-00c04f186933" t="r" />

8/16/2024

FLEx Conceptual Model Page 32

</MorphType>
</rt>

The next step is to add a MoStemMsa object to the entry. We use the IMoStemMsaFactory to
create the object, and then add it to the MorphoSyntaxAnalyses owning property of LexEntry. To
set the PartOfSpeech reference property we use the FindPossibilityByName method on the Parts
of Speech list to get the “Noun’ item, then store a reference to the item in the PartOfSpeech
reference atomic property.

stemMsa = sl.GetService(IMoStemMsaFactory).Create()
entry.MorphoSyntaxAnalysesOC.Add(stemMsa)

plist = Ip.PartsOfSpeechOA

stemMsa.PartOfSpeechRA = plist.FindPossibilityByName(plist.PossibilitiesOS, 'Noun', wsa)

<rt class="MoStemMsa" guid="c710bbdc-11f7-46be-96c2-e81674138eed" ownerguid="58ec354f-
9013-4aca-b20f-9e3f999e1b96">

<PartOfSpeech>

<objsur guid="a8e41fd3-e343-4c7c-aa05-01ea3dd5cfb5" t="r" />

</PartOfSpeech>

</rt>

The next step is to add a sense to the entry. We use the ILexSenseFactory to create the LexSense
object, and then store it in the Senses owning sequence property of LexEntry using the Add
method. Next, we fill in the analysis alternatives of the Gloss and Definition properties. Next, we
store a reference to the MoStemMsa in the MorphoSyntaxAnalysis atomic reference property of
LexEntry Next, we add a couple semantic domains to the sense. In this case, we use the
FindPossibilityByName method on the semantic domain list with Abbreviations of 1.6, and
1.6.1.1.2 to get the items, and then store a reference to the items in the SemanticDomains
reference collection property of LexSense.

sense = sl.GetService(ILexSenseFactory).Create()

entry.SensesOS.Add(sense)

sense.Gloss.set_String(wsa, 'lion’)

sense.Definition.set_String(wsa, 'A large carnivorous feline mammal.’)
sense.MorphoSyntaxAnalysisRA = stemMsa

plist = Ip.SemanticDomainListOA
sense.SemanticDomainsRC.Add(plist.FindPossibilityByName(plist.PossibilitiesOS, '1.6', wsa))
sense.SemanticDomainsRC.Add(plist.FindPossibilityByName(plist.PossibilitiesOS, '1.6.1.1.2", wsa))

At this point the Examples property is empty. It gets set in the next section.

<rt class="LexSense" guid="933e76a4-6ded-47df-81ca-581f4937c08a" ownerguid="58ec354f-9013-
4aca-b20f-9e3f999e1b96">

<Definition>

<AStr ws="en">

<Run ws="en">A large carnivorous feline mammal.</Run>
</AStr>

</Definition>

<Examples>

<objsur guid="807ee5ce-9312-4761-bc6c-089c0ebb34ac" t="0" />
</Examples>

<Gloss>

<AUni ws="en">lion</AUni>

</Gloss>

<MorphoSyntaxAnalysis>

<objsur guid="c710bbdc-11f7-46be-96¢c2-e81674138eed" t="r" />

8/16/2024

FLEx Conceptual Model Page 33

</MorphoSyntaxAnalysis>

<SemanticDomains>

<objsur guid="56ef3f06-7fb9-462e-a7d0-517f3ce1623f" t="r" />
<objsur guid="944cf5af-469e-4b03-878f-a05d34b0dof6" t="r" />
</SemanticDomains>

</rt>

Next, we’ll add an example sentence to the sense. We use the ILexExampleSentenceFactory to
create an instance of the class and then store it in the Examples owning sequence property of
LexSense using the Add method. Then we can add the sentence text in the vernacular alternative
of the Example property on ExampleSentence.

example = sl.GetService(lLexExampleSentenceFactory).Create()
sense.ExamplesOS.Add(example)
example.Example.set_String(wsv, 'Le lion est le roi de la jungle.")

At this point the Translations property is empty. It gets set in the next section.

<rt class="LexExampleSentence" guid="807ee5ce-9312-4761-bc6c-089c0eb6b34ac”
ownerguid="933e76a4-6ded-47df-81ca-581f4937c08a">

<Example>

<AStr ws="fr">

</AStr>

</Example>

<Translations>

<objsur guid="6252d6ff-b0f3-4129-9650-77826569d7d4" t="0" />
</Translations>

</rt>

Finally, we can add a translation for the example sentence. We use ICmTranslationFactory to
create the object. However, this is one of the classes in the model that has the GenCreate (in the
spreadsheet) property set to false. This means there isn’t a Create() method to create it. Instead,
there is an override for Create that takes two parameters; the owning LexExampleSentence, and
the item from the Translation Types list. In this case, we use the FindPossibilityByName method
on the Translation Types list to get the ‘Free Translation’ list item, and include it as the second
parameter to the Create method. The first parameter is the LexExampleSentence object. This
method automatically adds the CmTranslation object to the Translations owning property of
LexExampleSentence. Next we add the translation text in the analysis alternative of the
Translation property of the CmTranslation.

plist = Ip.TranslationTagsOA

freeTrans = plist.FindPossibilityByName(plist.PossibilitiesOS, 'Free translation', wsa)
translation = sl.GetService(ICmTranslationFactory).Create(example, freeTrans)
translation.Translation.set_String(wsa, "The lion is the king of the jungle.")

<rt class="CmTranslation" guid="6252d6ff-b0f3-4129-9650-77826569d7d4" ownerguid="807ee5ce-
9312-4761-bc6c-089c0ebb34ac">

<Translation>

<AStr ws="en">

<Run ws="en">The lion is the king of the jungle.</Run>

</AStr>

</Translation>

<Type>

<objsur guid="d7f7164a-e8cf-11d3-9764-00c04f186933" t="r" />

8/16/2024

FLEx Conceptual Model Page 34

</Type>
</rt>

8/16/2024

FLEx Conceptual Model Page 35

13 Creating an entry, analysis, and text using Python

Here is an example of creating an entry, an interlinear text and a complete analysis approved by
the user. This diagram shows the structure needed for this. It assumes that the text, entry, and
wordform is not currently in the project.

Text =0 StTxtPara Segment
Name: Gargon Text Paraaraphs —p Contents: garcon BeginOffset: 0 '
Contents ———» arap Segments 4>I Analyses — - — Jr -—=-
l ' |
1
Interlinear Text :
LangProject CmAgent :
Ana|yzingAgents —Ip Name: default user 8caa :
. Human: True CmAgentEvaluation |
Approves ——p/ |
WiiAnalysis ‘|‘ :
|
WiiWordform Category —-———f—=——=—~- p PartOfSpeech: n | |
Form: gargon Evaluations ——-f-=======-———————————--! !
Analyses ———p WifiGloss !
SpellingStatus: 0 ‘boy ——m— e !
peliing Meanings 4" Form: boy <+
WfiMorphBundle
Wordform MorphBundles — Form: gargon
Inventory e |
Msa ———-———+ -=5 |
Morph —————1 A |
[: :
o
I
| |
LexEntry MoStemAllomorph | o
! I
Form: gargon e
LexemeForm P MarnhTune - I, . MoMorphType
MorphType r : : » stem
MoStemMsa Lo
|
-4
MorphoSyntaxAnalyses || PartOfSpeech — - - E ——= + _}PartOfﬁpeech
———d——
LexSense : :
e |
Gloss: boy « |
Senses g MorphoSyntaxAnalysis |- - - - - -

Lexicon

This code assumes that sl is set to the ServiceLocator.

##H Create entry

entry = sl.GetService(ILexEntryFactory).Create()

##H## Create MoStemAllomorph and add to entry LexemeForm
stemAllo = sl.GetService(IMoStemAllomorphFactory).Create()
entry.LexemeFormOA = stemAllo
stemAllo.Form.set_String(wsv, 'garcon’)

plist = lexicon.MorphTypesOA

8/16/2024

FLEx Conceptual Model Page 36

stemAllo.MorphTypeRA = plist.FindPossibilityByName(plist. PossibilitiesOS, 'stem’, wsa)
Create MoStemMsa and add to entry MorphoSyntaxAnalyses

stemMsa = sl.GetService(IMoStemMsaFactory).Create()
entry.MorphoSyntaxAnalysesOC.Add(stemMsa)

plist = Ip.PartsOfSpeechOA

stemMsa.PartOfSpeechRA = plist.FindPossibilityByName(plist.PossibilitiesOS, 'Noun', wsa)
Create sense and add to entry Senses

sense = sl.GetService(ILexSenseFactory).Create()

entry.SensesOS.Add(sense)

sense.Gloss.set_String(wsa, 'boy’)

sense.MorphoSyntaxAnalysisRA = stemMsa

##H# Create Wfiwordform

wordform = sl.GetService(IWfiwordformFactory).Create()
wordform.Form.set_String(wsv, 'garcon’)

Create WfiAnalysis

analysis = sl.GetService(IWfiAnalysisFactory).Create()
wordform.AnalysesOC.Add(analysis)

plist = Ip.PartsOfSpeechOA

analysis.CategoryRA = plist.FindPossibilityByName(plist.PossibilitiesOS, 'Noun', wsa)
agevalRepo = sl.GetService(ICmAgentEvaluationRepository)
apprAgent = agevalRepo.GetObject(Guid("8caallbb-cac4-4836-a081-1666245106b9"))
analysis.EvaluationsRC.Add(apprAgent)

Create WfiGloss

wgloss = sl.GetService(IWfiGlossFactory).Create()
analysis.MeaningsOC.Add(wgloss)
wgloss.Form.set_String(wsa, 'boy’)

Create WfiMorphBundle

wmb = sl.GetService(IWfiMorphBundleFactory).Create()
analysis.MorphBundlesOS.Add(wmb)
wmb.Form.set_String(wsv, 'gargon’)

wmb.SenseRA = sense

wmb.MsaRA = stemMsa

wmb.MorphRA = stemAllo

Create Text

itext = sl.GetService(ITextFactory).Create()

itext. Name.set_String(wsv, 'Gargon Text')

Create StText

sttext = sl.GetService(IStTextFactory).Create()
itext.ContentsOA = sttext

Create StTxtPara

stpara = sl.GetService(IStTxtParaFactory).Create()
sttext.ParagraphsOS.Add(stpara)

stpara.Contents = TsStringUtils.MakeString(‘gargon.’, wsv)
Create Segment

seqg = sl.GetService(ISegmentFactory).Create()
stpara.SegmentsOS.Add(seq)
seg.AnalysesRS.Add(wgloss)

Note that the guid for the approved human agent should be the same in all projects.

Note that BeginOffset on Segment is a read-only attribute, so it can’t be set. Since this code does
not set ParselsCurrent on StTxtPara, when Flex opens that text, it will parse the paragraph,
setting ParselsCurrent to True, and setting BeginOffset appropriately, which is 0.

8/16/2024

